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ABSTRACT

Based on a modified output regulator problem, a design oriented

methodology is presented for the construction of output feedback compensa-

tors retaining A(ll-n) optimal eigenvectors from a reference state

feedback regulator. Viewing A as a design parameter, it is known that in

the case A>r this requires a dynamic compensator of dimension I- r whose

parameters are determined in function of the solution of an associated

output feedback pole-placement problem. Using an iterative dyadic pole-

placement procedure, an algorithm is given which determines the solution

of this pole-placement problem without a priori assumptions on the compen-

sator dimension. The methodology is also extended to the class of stabiliz-

able systems and the required compensator shown to posse=- a separation

property. Finally the design methodology is illustrated by three nontrivial

examples.
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INTRODUCTION

In the design of linear quadratic regulators for time-invariant

systems, the inaccessibility of state variables precludes the implementation

of optimal state feedback control laws. Two approaches to the resolution

of this difficulty are the reconstruction of unmeasured states by reduced

I order observers and the reformulation of the optimization problem as an

I output feedback quadratic regulator problem. The introduction of reduced

order observers allows the retention of the optimal state feedback control

j law, but may often result in the use of a compensator of much higher dimen-

sion than is actually needed to satisfactorily control the system. The

*reformulation of the problem under output feedback suffers a more severe dis-

," advantage. Whereas there is a wealth of literature available on the state

feedback regulator and associated state reconstruction problems, or estima-

Ition and filtering problems in the presence of noise, very little is known
about the existence and properties of solutions to the output feedback reg-

ulator problem. It is therefore of interest to develop implementable

regulators which retain some measure of optimality provided by the state

feedback regulator problem, without requiring the use of compensators of

high dimension.

One solution to this problem is to design compensators for output

feedback regulators which retain as many optimal eigenvectors of the corre-

j Isponding state feedback regulators as possible. Such regulators have the

properties of achieving the optimal cost in the subspace spanned by the

retained eigenvectors, and of providing an easily computed measure of the

cost degradation in the remaining state space. It is known that retention
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of r +p optimal eigenvectors, where r is the rank of the output matrix,

requires the construction of a dynamic compensator of dimension p, and that

the compensator parameters may be determined in function of the solution of

an associated output feedback pole-placement problem [1].

Following a review of a design oriented methodology for the con-

struction of output feedback regulators which retain r +p optimal eigen-

vectors (p kO), an algcrithm will be presented which solves the associated

pole-placement problem and determines the dimension p of the required com-

pensator without a priori assumptions. In the event the system is stabili-

zable by static output feedback, rather than construct a dynamic compensator,

it may be preferable to relax the requirement of retention of r +p optimal

eigenvectors. The problem of retention of fewer than r optimal eigenvectors

will therefore be considered and shown to also give rise to an output feed-

back pole-placement problem. Finally it will be shown that the design

methodology may be extended to the class of stabilizable systems.

In chapter one dyadic solutions to the static output feedback

pole-placement problem are reviewed. The second chapter presents the

methodology for the design of suboptimal linear quadratic regulators which

retain A(l 1 9n) optimal eigenvectors from the state feedback regulator.

Based on the methodology proposed in [2] for solving the general output

L feedback pole-placement problem, an algorithm is obtained in chapter three

which solves the pole-placement problem associated with the design of sub-

optimal regulators. In the last chapter three nontrivial examples illustrate

the design methodology.
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CHAPTER 1

DYADIC SOLUTIONS TO THE OUTPUT FEEDBACK POLE-PIACENENT PROBLEM

Since the problem of eigenvalue assignment by state feedback was
I

resolved [3] the related problem of eigenvalue assignment by output feed-

back has been the subject of extensive research. Aside from numerical methods,

approaches to the problem may be characterized as giving rise to either dyadic

or full rank feedback matrices.

In the dyadic approach the nonlinear equations which describe the

Icomplete solution to the problem are rendered linear by arbitrarily fixing

certain otherwise free parameters, and the feedback gain matrix is obtained

as a sum of dyadic products. Dyadic solutions have been obtained for systems

j represented in state space [4], [5], [6], [7] and for systems described by

transfer functions [8], [9], [10], [11].

Other approaches to the problem attempt to utilize the freedom

I discarded in the dyadic approach, typically to assign eigenvectors as well

as eigenvalues, and while usually resulting in full rank feedback matrices,

Itend to give rise to solutions which are numerically difficult. Extensive

results have been obtained using geometric approaches [12], [13], [14].

I Other approaches include the generalized root locus [15], [16], [17], the

use of generalized inverses [18], [19] and the use of Kronecker products [20].

Because of the difficulty of obtaining explicit solutions to the

joutput feedback pole placement problem, many numerical procedures have been
proposed. In view of the fact that in general only m+r-l eigenvalues may be

1arbitrarily assigned while nothing can be said about the resulting locations
of the remaining eigenvalues, it has been suggested that the problem be
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reformulated as an optimization problem to minimize the deviations of all n

elgenvalues from their desired locations [21], [22]. Other authors have

considered the problem of requiring the closed loop eigenvalues to lie in

prescribed regions of the complex plane [23], [24]. This leads naturally to

recasting the problem as an output feedback linear quadratic regulator prob-

lem [24], but theoretical results are lacking. In chapter 2 one approach

to designing suboptimal linear quadratic regulators will be seen to lead

directly back to the output feedback pole-placement problem.

In this chapter dyadic solutions to the output feedback pole-

placement problem are discussed in detail as they will be used in chapter 3

to solve the pole-placement problem associated with the design of suboptimal

regulators.

Let the triple (A,B,C) represent the linear time-invariant system
=A+B , =C ,AERnxn BRnxn C rxn

kAx+Bu , yCx, CE R (1.1)

where B and C are assumed to be of full rank. Then except for certain

singular systems it is known that max(n,m+r-l) eigenvalues may be assigned

"almost" arbitrarily by output feedback of the form u =Ky; K ER . The

proof of this is constructive and relies on the fact that uncontrollable

and/or unobservable eigenvalues of a system are invariant under output feed-

back. The idea is that, after an initial feedback placing some eigenvalues

at their desired locations, the system may be collapsed to a single input or

output system having min(m,r)-l of these eigenvalues uncontrollable or un-

observable. The remaining min(max(m,r), n-min(m,r) +1) desired eigenvalues

may then be assigned by a further feedback. Formulas for the computation of



the required gains are given in the proof of Theorem 1.2 below, and Theorem

1.3 gives the final desired gain as a sum of dyadic products.

I The following definitions make precise the use of the word "almost".

Definition 1.1 [261: Let tTi(x)} be a finite set of real valued poly-

nomials taking their arguments in a parameter space Rn . Then the set of

common zeros V =xERn :.(R)=0, l'i-'NJ is called a proper variety pro-

vided V Rn.

Definition 1.2 [26]: A property is said to hold for almost all points in a

parameter space Rn provided the set of points at which the property fails to

I hold is the union of a finite number of proper varieties.

Also are needed:

Definition 1.3 [13]: A set rA of I complex numbers is said to be a symmetric

I set provided XEFA if and only if X*EF. 0

Definition 1.4: The matrix A is said to have A assignable eigenvalues if for

almost all symmetric sets 1' there exists an output feedback matrix K such

" that r£CO(A+BKC).

A preliminary result will permit the avoidance of any discussion

of the complications which arise if the matrix A has repeated eigenvalues.

Theorem 1.1 [271: If (A,B,C) is a controllable and observable triple then

for almost all matrices K, the eigenvalues of A +BKC will be distinct.

Proof: See [271.

The proof of the next theorem provides formulas for computing the

factors of dyadic output feedbacks. A result that will be needed in the proof

is contained in Lemma 1.1. To simplify the notation, let IAI denote the determinant

of A.

Lemma 1.1 [281: If x,yER x l are column vectors then 1In+xy T (l+y Tx).
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Proof: Let V ER n x ( n ' ) have as columns any basis for the null space of yT

Then n(In+xT )V-V and it follows that 1 is an eigenvalue of I +xy T with

algebraic multiplicity n- 1. Letting X denote the remaining eigenvalue of

in + xy then

lin+xyj =X , trace(In +xyT )X+(n-1) (1.2)

and since trace(In +xy T ) -n +<x,y> there follows

1In+xyT = trace(I +xyT) - (n-l) (l+yTx) (1.3) 0

Theorem 1.2 [4l,[6]: If (A,B,C) is a controllable and observable triple

with C having full rank r and A having distinct eigenvalues, then for any

symmetric set r there exists a feedback matrix K such that r eigenvalues
4r

of A+BKC are arbitrarily close to the elements of the set 1r
r

Proof: Let r  r=Xi4.= I be a symmetric set of complex numbers to be assigned

to the spectrum of A+BKC. By Theorem 1.1 it may be assumed without loss of

generality that the eigenvalues of A are distinct. The theorem is proved by

finding a vector f such that the pair (A,Bf) is controllable and then solving

the pole-placement problem for the single input system (A,BfC). The final

feedback gain will be a dyadic product K = fg.

nxn
Let TER7 transform the matrix A to Jordan form so that

T_ ATi-dg[ ... ] , TB = [T'ib : l m  (L.4)

and note that by the assumption of controllability, each row of T 'B has at

least one nonzero entry. Select f ERm  such that no entry of T'IBf is

zero. This is always possible, as the set of vectors f such that some entry
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of T Bf is zero is the union of m proper (linear) varieties. With b -Bf

the single input system (A,b,C) is then controllable.

Let the characteristic equation of A be

n
p0() W ai a =1 (1.5)

0 i=O i ' n

and by Leverrier's algorithm write

n-= I i- -
( -l 1X n-i- Fi=j a .Ai (1.6)
(XI-A =-0~in i ij n-j

By Lemma 1.1 the closed loop characteristic equation under feedback u =gy,4I lx r
g ER ,may be written

P (X) = IXI-(A+bgC)i XI- bgC(%I-A) lj LI-A1 17

= (1 -gC(%I-A) 1 'b)p W(1.7

n-1 i j-l

Changing the summation indices to k i-J, I -i the equation becomes

PCW ( Po (X) -gCQRs(%) (1.8)

where

I a 1  ...... a1

1. .

n-1
Q [b:Ab:. . A b], R= . ,s(X)= %

1 a 1-1

(1.9)
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Defining P=[po(%l) ... por]RrXlandS=(l ) 
. ' nxr

and constraining pc(i) 0 for i- 1,..., r results in the square linear

system of equations

gCQRS P (.10)

which will always have a solution g except for those choices of 1r for which

iCQRSI =0. If this determinant is zero and the equations are inconsistent

then an arbitrarily small perturbation of the Xi will result in a consistent

set of equations, but it should be noted that in practice this will result

in arbitrarily large gains in some or all of the entries of g. The theorem

is proved on writing the final feedback as K = fg. M

By duality there follows immediately from Theorem 1.2:

Corollary 1.2.1 [41: If (A,B,C) is a controllable and observable triple and

B and C are of full rank, then for any symmetric set r' of p =max(m,r) com-p

plex numbers there exists A matrix K such that the eigenvalues of A+BKC

are arbitrarily close to the elements of r . 0
p

It should be noted that the selection of f in the proof of the

theorem was completely arbitrary and represents precisely that loss of

freedom in the specification of a dyadic feedback K which results in a

linear system of equations. Also the requirement of controllability of

the pair (A,B) may be relaxed to the requirement that (CQRS) be invertible,

but conditions on the matrices A, B, f under which this will be true are not

known. That the matrix may fail to be invertible for some uncontrollable

systems will lead to the failure of Theorem 1.3 to hold for all triples

(A,BC). Finally it is remarked that the method of the proof of Theorem 1.3
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fails in the case Fr contains repeated eigenvalues. A straightforward

modification of the equations to handle this case is given in (4] and may

I be of interest, for example, in solving minimum time problems for discrete

f Isystems.
In general,for any fixed f the equation ICQRSI =0 defines a prop-

<er variety of eigenvalues F which are not assignable by any finite output

feedback. The following example illustrates this point.

Example 1.1 [121: Let (A,B,C) be given by

I - -

i. A 1 0 0 , B 1 0 C 0 0 0i ii

0 1=L 0 , BL I 1.1

The open loop characteristic equation is po () =3 +%2-1. For any given

f= (fl,f2)T the gain K=fg is defined by (1.10):

(El' g2 ) "1 fl1 0 f 2 0 1=1 X

f f 0 0 1 1 1

+2 3 3+k 2 ) (1.12)

and the equation

0 ICQRS 1= (2 " ( f  2 + )

f2 ( 1 
+  12 +) - ff 2 ) (1.13)

defines those symmetric sets (%l,%2) which are not assignable, though as

noted above, the equations may be modified to handle the case X1 2 "
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The main theorem may now be given.

Theorem 1.3 [51.[7]: For almost all controllable and observable triples

(A,B,C) and for any symmetric set r of p =min(n,m+r-l) complex numbers,P

there exists a matrix K such that the eigenvalues of A+BKC are arbitrarily

close to the elements of 1p.

This result was obtained in [5], [7] and [12] and provides the best

known bound on the number of eigenvalues assignable by output feedback. For

a geometric proof which constructs a full rank feedback the interested

reader is referred to [12].

Proof: Let r =:%..P I be a symmetric set of p=min(n,m+r-l) complex numbersp 1Lil

to be assigned to the spectrum of A+BKC. By Theorem 1.1 it may be assumed

that the eigenvalues of A are distinct. The theorem will be proved by

constructing a rank 2 gain K = flgl +f 2g 2 where f1 will be arbitrary, g, chosen

to place at least r-1 eigenvalues, g2 to render those r-l eigenvalues un-

observable, and f2 to place the remaining min(n-r+1,m) eigenvalues.

With A, b, c, [ai f ai = 'W), p (X) to be defined

below let:

nl .T ATT" . ^n-lTTT
Q [b :Ab :...:A b] Q .[ :Ac .... . (A )c

1 n-l n-l
1 a 1 - .... r1 1 1 %r

1 a 1R1 - . . . CL . . ..
1 a-l . 0

0 2 2

1 n-i 1 .... 1

1 n-l
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(1..14)r rI .I 1r

SL P [p() p
2 10 . or

1 Ikn-I

min (n, m+r- l) min(n,m+r-1)

'J P2" [P0 (Yr 0 "" om in(n,m+r- i))3'

orm beayvctrsc

As in the proof of Theorem 1.2 let f ERmxl any vector such

that the pair (A,b), b -Bf is controllable, and denote the open loop

characteristic polynomial of A by

1 1 1
p (a) a n (1.15)

Then by Theorem 1.2, the solution g1 E R x r of the equation

gl(C Q1R S1 ] l (1.16)

will assign the eigenvalues Lx r to the spectrum of A =A+Bfg1 C, subject
ii=l

to a possible perturbation of the numbers X. to ensure the consistency 3f the

equations.

Recalling that unobservable eigenvalues are invariant under output

feedback let V1 E 1R(rl) and V2 ERnx(n ' r+l) have as columns the eigen-~r- 1

vectors of A corresponding respectively to (%i i=I and the remaining eigen-

values of A. Then if g2CVO, the single output system (A,B,c), cg 2C,
1r-l

will have r-l unobservable eigenvalues ( il • The number of nonzero

entries of the vector g2CV2 will be the number of eigenvalues of A subject

to influence under further feedback. A solution to g2CV2 
= 0 always exists

as it requires finding an r-vector orthogonal to r-l other r-vectors, how-

ever conditions under which at least min(m,n-r+l) entries of g2CV2 will be
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nonzero are not known.

Let the characteristic polynomial of A be

p2 in i 2=a 1 (1.17)
0 n

poA = i 0 a n = i(.7

Applying the dual of Theorem 1.2, the solution f2 of the equations

(S2R2Q2 
B f 

2 - P2  (1.18)

will assign the remaining eigenvalues t%. min(nm+r-) to the spectrum of

A+Bf2g2C, provided the equations are consistent. The final dyadic feed-

back will then be K = flgl +f 2g 2. If the equations are inconsistent, then

a perturbation of the eigenvalues to be assigned may possibly fail to make

[S2R2Q2 B] invertible, since the factor R2Q2B cannot be guaranteed to be of

full rank, the triple (A,B,C) not being observable. o

Since rank-deficient compensators have poor disturbance rejection

properties in applications, the procedure of this proof may be iterated to

obtain full rank feedback matrices as sums of min(m,r) dyadic products [2].

This modification provides the basis for the algorithm given in section

3.1 and will be discussed in detail there.

The following example illustrates the possibility of a system

structurally failing to allow the assignment of min(n,m+r-l) eigenvalues.

Example 1.2: Let A1,A2 ER
2 x 2 and bl,b2 ,c ,c2 ER2 x and consider the

system

A 0 b 0 C 0

1L2 1~ $j 1 0J (1.19)
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2 x 2
Under output feedback u =Ky, K ER the closed loop system isTL

A1+k 1 1bIc1  k12b

kbcT (1.20)c
l2 2 1 2 22 b c2

The result of Theorem 1.3 would predict that min(n,m+r-l) -3 eigenvalues

may be assigned. However if either b CT = 0 or b cT = 0 the closed loop1 2 2 1

system is block triangular and only max(m,r) =2 eigenvalues may be assigned,

one to each diagonal block by the choice of kll, k22.

jAn alternate characterization of the vectors fi,g i in the proof of

Theorem 1.3 is available. Rather than requiring pc(x)= 0, i= 1,...,max(m,r)

in the proof of Theorem 1.2, the desired closed loop characteristic equation

may be constrained to be of the form

max(m, r)
PC(%) - Pl(%)P2 ( %) ' Pl ( %) i=l d k-i (1.21)

giving rise to a system of equations which determine not only the feedback

gain but also the remaining spectrum of the closed loop system as the roots

of p2 (X) [8]. Since this will require the computation of the Markov param-

eters CA B, a pole-placement procedure incorporating this approach will be

referred to in this thesis as a frequency domain solution, whereas the pro-

cedure contained in the proofs of Theorems 1.2 and 1.3 will be referred to

as a state space solution. By duality it suffices to define a frequency

domain solution by indicating formulas for pole-placement in single-input

systems and for rendering poles uncontrollable.

Let the system (A,B,C) have transfer function
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n

C(%I-A)' B = N(X) / d(%) , d(%) = i_ aa , an = 1 (1.22)

and assume that the eigenvalues of A are distinct. Using Leverrier's

algorithm the transfer function may be written in terms of the Markov

parameters CA iB:

n-1 i
N(k) = C adj(7I-A)B = C( a .Ai' n'il)B

i j=0 n-j
n-i n-k-I (1.23)

a .CA (n-k-)-JB)% k

k0 (.j-o Q n-j

n-k-i -1j
Defining a .CAn-k-l- B equation (1.22) becomes

Nk j=O n-j

n-i
C(%I-A) B = (i0 NiXi) / d(k) (1.24)

The following lemma is needed in obtaining single input systems

with prescribed uncontrollable eigenvalues.

Lemma 1.2 fil]: If X is a root of d(%) then rank N(X )l.

Proof: Let T transform A to the Jordan form T IAT=dg( 1,...,Xn). Then

N(X) =C adj(%I-A)B =CT adj(dg(%-Xl,...,-n))T-1 B

(1.25)

=TCT dg(B;,(%-%,),... n(%-Xi))T 1B

If X0 k for some k, 11k-n,then N(% ) becomes

N( 0 ) =CT dg(0,...,,i (%-%i),0,..,,)T'1B (1.26)

and so rank N(%) zi.

Recall that a pole of a single input system is uncontrollable if

the numerator of the transfer function is zero evaluated at that pole, and

let f define the single input system (A,Bf,C) with transfer function



I
1 15

n-i n Irf]
H(X) - N( k)fld(X) , N()iZ 0 N i ,Ni= Eif (1.27)

I
n 

rn-

To render m-i poles MXiji.l uncontrollable it suffices to satisfy N(Xi)f=0,

i-,...,m-l. If the matrix MER m- l x M is taken to have as its ith row the

linearly independent row of N(%i) then f may be obtained as the solution of

Mf =0 [2], [11]. (If N(Xi ) =0 then X. is already uncontrollable and the

Iith row may be taken all zeros).
Let L' i , be the r poles to be assigned by the feedback g ERIxr

of Figure 1.1. By summing at nodes 1 and 2 in the figure the closed loop

transfer function may be written

H () = (I -H(%)g)-H(X) = H(X) / (1- gH(X)) (1.28)

from which the closed loop polynomial is given by

PC(X) = d(%) - gN(X) (1.29)

Node I Node 2

r + y

Figure 1.1. Block diagram of transfer function given in
(1.28).
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'From this equation there arise two possibilities for solving for g. Con-

straining p =X0, i1..r gives the system of equations (1.8), (1.9)

in the prooi of Theorem 1.2:

[ (X),.-,p0 Ar' g[N(% )f : :N(% )f]
n-l nr

9j (1.30)

n. (n-l)**n rl Ar

The second method solves a higher order system of equations but

also obtains the coefficients of the polynomial whose roots are the remain-

ing n-r poles of the closed loop system. Let

r r

-T X(%i d X ,d = 1 (1.31)

and factor

r in-n
p ()pXp )(Z d _X'( h.X'), h =1 (1.32)c % % 2 i= i~ i n-r

Then equation (1.29) becomes

r n-n n-i

di~ dX X(.Z h X) E ai) -x .E gN X )(1.33)
(i=O i=O L-W i==

This may be rewritten

n-li r n-n-i n r r -~
%N zNX +( E Zax 7 dX (1.34)

Equating coefficients of X gives the nth order linear system of equations
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nil .............................. nlr

nrl ....................... ..... nrr

[g g:h X d d ..... dri 1. 0

0 d 0 dr 1 1 0
* • . • .

.... do dI  . drI

(1.35)

S=(ao, .... ,a nl - (0,...,O,do~dl,...,d r-1)

These equations determine the gain g, and the remaining spectrum of A+BfgC

as the roots of p2 (%). As in Theorem 1.2 it may arise that the coefficient

matrix in (1.35) is singular. If the system of equations is inconsistent

then an arbitrarily small perturbation of the Xi will render the coefficient

matrix invertible by altering the lower (n-r)xn block.

To illustrate frequency domain and state space solutions of the

pole-placement problem reconsider Example 1.1.

Example 1.1 (continued) [121: Let A,B,C be given by (1.11), and assume the

desired closed loop spectrum is (-2,-l+lj). Since m+r-1 =3, arbitrary

pole-placement is possible.

A dyadic feedback K=f g1 + f2g2 is computed in two stages. At

the first stage two poles are placed and at the second stage one of these

poles is rendered invariant to further feedback and two additional poles

are assigned. There are several possibilities for computing f1,gl, f2 g2.

At the first stage fl may be chosen arbitrarily and g, coriputed from (1.16)

to place r=2 poles, or g, may be selected arbitrarily and f, computed from

A
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(1.18) to place m=2 poles. At the second stage there are also two choices.

Either f2 may be chosen to define a single-input system with m-l uncontrol-

lable poles and g2 computed from (1.16) to place r additional poles, or 92

may be chosen to define a single-output system with r-l unobservable poles

and f2 computed from (1.18) to place m additional poles. In this example,

for both the state space and the frequency domain solutions, r poles will

be assigned at the first stage. At the second stage g2 will be chosen to

render r-l poles unobservable and then f2 will be computed to place the

remaining m poles at their desired locations. Because the complex pair

-l+lj may not be split, X=-2 must be assigned at the first stage.

The state space solution is as follows. Arbitrarily select

T
fl =(IO) and let the spectrum to be assigned by g, be (-2,0). With

pi()-X3 + X2 -,X I =-2, X2 =0 equation (1.16) becomes

(1.36)
- (-5,-l)

which has solution g, = (-l,-3). The resultant spectrum is (i) =f(f,-2,-2)

and

A 1 -3 -1 , p (X) X3 +4X 2 +4X (1.37)

0 1 0
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The repeated eigenvalue X --2 has only one eigenvector V ffi(-l,-2,1) T

To render one eigenvalue at -2 unobservable the equation g2CV 1 0 is
2

solved for g2  (2 ,1). Using po(-l+ lj) -- 2+2j equation (1.18) becomes

-2i -1+j 1 1 0 0 1 2 0 0

2j -l-j L 4 1 -1 -1 1 f2

I4 - 2 0 1

= (1.38)• I l-2+2j_

Premu]tipling by 2j2 to obtain a set of real equations, the solution is

f 2 (4,-2 )T The final feedback is then

Kf=f + fg 2  [_7 _1] (1.39)

and the spectrum of A+BKC is (-2,-l+lj).L"

The frequency domain solution is as follows. Again selecting

f, =(,0)T the transfer function for the single input system (A,Bf1 ,C) is

I~k 3 .1 2 (1.40)

X+X-+

Placing pales at -2,0, (1.31) becomes pl(.) =%.2 +2% and (1.35) gives

[g1 : h] 0 ] = (-l,0,l)-(0 :0,2) (1.41)
0 2 1
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The solution is g,= (-l,-3) and h =2. The spectrum of A is therefore (0,-2)

together with the root -2 of p2 (%) -%+h. Since the spectrum of A is known,

its characteristic equation is also known and the transfer function for the

system (A,B,C) may be computed from the Markov parameters (1.23):

2 +
1 1 +4%+3C(%I-A)B - N(X)/d(X) = 43 + 422 + 4X% x .)

To render the pole at -2 unobservable, g2 is computed as the solution

g2 - (2,1) of g2 N(-2) =0:

g2N(-2) = g2 L 21-0 (1.43)

The transfer function of the single-output system (A,B,g2C) is then

2 (%2 +3%+2,2%2 +7X+6) (1.44)
X3 +4X +4%

To place two poles at -l+lj, (1.31) becomes p2 ()=% 2+2%+2, and the

dual of (1.35) gives

3 7 2 ...- (1.45)

The solution is f2 = (4,-2 )T h =2. The final feedback gain K is given by

(1.39), and the spectrum of A+BKC is -l+lj together with the root -2 of

P2(%) =X+h. 1
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CHAPTER 2

DESIGN OF SUBOPTIMA.L LINEAQUADRATIC REGUIATORS

This chapter considers the problem of designing suboptimal linear

quadratic regulators having the property of retaining any number I

(l'2 5 n) of eigenvectors at their optimal locations as defined by a

reference state feedback regulator problem. The system under consideration

will be taken to be

k=Ax+Bu , y=Cx , AERn n, BERn ", CERrxn (2.1)

and will be assumed to be controllable and observable.

In the case 1- r the solution will be seen to be given by a static

output feedback compensator, while in the case I >r a dynamic compensator

will be required. In the complete methodology I is viewed as a free para-

meter to be specified during the design procedure and not fixed a priori.

When I Or there exists freedom in the design, which is translated into the

choice of feedback gains if A <r and into the choice of parameters of the

dynamic compensator if A >r. In both cases this freedom is used to shape

the complementary spectral characteristics of the closed loop system by

solving an associated output feedback pole-placement problem, a solution to

which will be given in section 3.1.

2.1. Review of Necessary Conditions

In this section solutions to three related linear quadratic

regulator problems are presented and their properties reviewed.

nxn . x T T
Let Q E R RER where Q -QTk 0 and R - R >0.

1A
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For reference purposes the state feedback linear quadratic regu-

lator problem is defined as:

minimize r
u = -Kx,K E R f(x Qx+u Ru)dt (2.1.1)

k = Ax+Bu 0 J

Defining the state feedback Ricatti equation as

AM+MA- MBR1BT+Q = 0 (2.1.2)

it is well known that if (AQ) is a detectable pair then the minimizing

control law is given by u =-Kx where K =R BTM and M is the unique

symmetric positive definite solution of (2.1.2). If (AVQ"), is not a detect-

able pair and none of the eigenvalues of the matrix

-1 T
A -BR B

E = j (2.1.3)

lie on the imaginary axis, then (2.1.2) has at least two positive semi-

definite solutions M. More generally, if E has p unobservable eigenvalues

with positive real parts then there are at least 2p such solutions, in-

cluding the optimal solution M° and the unique stabilizing solution Ms, and

they satisfy [29]

0'M ° TM9M (2.1.4)

In particular, for the minimum energy problem (Q =0, R =I) the minimizing

solution is M0 
= 0,and if A is unstable (2.1.2) has a unique stabilizing

solution M. with the property of "reflecting" unstable eigenvalues of A

about the imaginary axis.
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The output feedback regulator problem is formulated under the

assumption that the initial state x0 is a zero mean random variable with

covariance matrix QO in order to eliminate the dependence of the cost

functional upon the initial state. The problem is to

minimizef
u=-Ky,KER x  E (xTQx+uTRu)dt (2.1.5)

k = Ax+Bu 0
y - Cx

Introducing the symmetric positive definite matrices L ERnx n , M E Rn x n

defined by

SE(xxT xxo 1' ( x Qx+u TRu)dt (2.1.6)

the necessary conditions for a solution to the problem are the coupled

Ricatti equations:

FTM +MF +Q + CTKTRKC = 0 (2.1.7a)

FL+LFT+Q0 = 0 (2.1.7b)

K -R" 1BTMLCT (CLCT) I (2.1.7c)

F - A - BKC (2.1.7d)

Little is known regarding the existence and properties of

solutions of these equations beyond the following sufficiency condition.

Theorem 2.1.1 [301: If there exists an output feedback matrix K ER7x r such

that A- BKC is a stable matrix, then there exists a solution to equations

(2.1.7) for all Qo>O, R>O, and Q0 provided the pair (AVQ) is

observable. 0
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Thus if the triple (A,B,C) may be stabilized by output feedback,

then the output feedback regulator problem has a solution. Furthermore,

using the stabilizing matrix K0 as an initial guess for the solution of

(2.1.7), the following numerical iteration scheme has been proposed [25]:

Fi+ +Mi+Fi +Q+cT KTRKiC =0, Fi A- BK C (2.1.8a)

Ki+l , R" BTi+l i+lCT (CLi+ICT ) " 1 (2.1.8b)

F L+ Li+LF Ti+QO = 0 (2.1.8c)

Given Ki, (2.1.8a) is solved for M i+ which determines Ki+l=Ki+l(Li+l)

by (2.1.8b). Solving equation (2.1.8c) for Li+1 gives Ki+, numerically

and completes the ith iteration. In practice this scheme frequently

converges but there is no general convergence proof.

For later purposes it is noted here that if an arbitrary output

feedback K is applied to the triple (A,B,C) the associated cost is 1trace(MQo)

where M=M(K) is the solution of (2.1.7a). If M, L is a solution of

(2.1.7a-d) then of course this is the optimal cost.

In order to obtain further insight into the properties of the

output feedback regulator problem, the problem has recently been reformu-

lated so as to eliminate the dependence of M and L on the covariance matrix

Q0 [31]. Noting that equation (2.1.7a) may be rewritten as

AT+MA++MBR'BTM+Q+W(M,K) = 0 (2.1.9a)

W(M,K) = (R1BTM-KC)TR(R'BTM-KC) (2.1.9b)

it may be shown that if K minimizes W(M,K) then the solution M -M (K)
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of (2.1.9a) is the optimal solution of the output regulator problem,

independent of the distribution of initial states. However, a K* that

makes W(M,K) minimal in the positive semi-definite sense exists only if

either C is invertible, or if the pair (A,C) is completely aggregable

(CA -AoC for some A0 ) and the weighting matrix Q may be decomposed as

QC TQoC. Both of these cases are equivalent to the state feedback reg-

ulator problem , under a transformation of basis in the first case, and

under a reduction of state in the later. It was therefore suggested in

[31] that K be chosen to minimize the.term R' TM-KC in W(M,K) with respect

to the matrix norm induced by the inner product (x,Ly) in order to make the

contribution of W(M,K) in (2.1.9a) small. For a given L the minimizing K

is given by

K = R1B TMLCT (CLCT -l (2.1.10)

and substitution in equation (2.1.9a) yields the equations:

ATM +MA - MBR' BTM +Q + (I-P)TMR 'BTM(I-P) = 0 (2.1. lla)

P LCT (cLCT) ' lC (2.1. llb)

Thus for a given L the necessary conditions for this modified output feed-

back regulator problem are the existence of a positive definite matrix M

satisfying equations (2.1.11). The corresponding feedback gain is given

by (2.1.10).

Relating this modified problem to the output feedback regulator

problem defined above it is known that if for some (Q,R) for which (A,>)

is observable there exists an L >0 such that (2.1.11) has a positive
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definite solution M, then for any Q 0, R>0, Q0 > 0, (AQ) observable, the

necessary conditions (2.1.7) for the output feedback problem have a solution

L>0, M>0 [31].

The properties of solutions of the modified regulator problem will

be discussed in the next section.

2.2. Retention of Optimal Invariant Subspaces by Static Output Feedback

Compensation

Since the solution of the output feedback regulator problem does

not have an analytic characterization it is of interest to obtain sub-

optimal output regulators associated with the state regulator. This section

gives a solution to the problem of determining output feedback gains which

assign A dimensional invariant subspaces (l 5A25r) of the optimal state

regulator. Consideration is restricted to those output feedbacks which

may be obtained as "generalized projections" of state feedbacks:

K0 = KsPI + P 2 (2.2.1)

Let Ks R- BT Mc be the solution to the state feedback regulator

problem for a given Q,R,where Mc is the solution of the Ricatti equation,

and define the two problems:

a) For I SuA <r determine an output feedback gain K0 such that a pre-

scribed I dimensional invariant subspace of (A-BKs ) is also an invariant

subspace of (A-BKoC).

b) For I -r determine an output feedback gain K0 such that an r dimensional

invariant subspace of A-BK s is also an invariant subspace of A-BK0 C and K0 is

optimal with respect to the modified output feedback regulator problem

define above.
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The first problem has a non-unique solution and may be solved

using generalized inverses. This gives rise to an output feedback pole-

placement problem which may be used to shape the complementary spectrum

of A-BKoC. Thus K0 may be chosen to retain an I dimensional subspace

which is optimal with respect to a state feedback regulator and the re-

maining freedom in K0 used to shape the spectrum of the closed loop system.

Le nf Rx n ~E.Let uiI' k Rndl idX. E be the eigenvectors

and eigenvalues of the optimal closed closed loop system F--A-BKs, where

the first I eigenvectors span the I dimensional invariant subspace of F to

be assigned to A- BKoC. It is assumed that (X,X,+1) is not a complex pair.

In order to work over the reals define a transformation Tr by

(rowi(Tr)i = (0)...,0,1,0,...,0) if X. is real
t ith position (2.2.2)

oi (T r 0.,. ,0 g -3 0
= [ 11 , ] if (Xi,X i+,) are aoi+ 1(Tr i  i,. , ,-, j . . ,

. ,0 0,. complex pair
t ith position

Then under Tr the complex pairs and [u+jv " u-jv] are

mapped to . and [u v] respectively.

Defining

U J (u 1  , A T"r dg(i,...,XI)Tr  (2.2.3)

the problem may be stated as that of finding a gain K an(. a matrix P0

such that

(A - BKC)U = U A

(A - BKSP)U z M UI AI (2.2.4)
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or equivalently, assuming B is of full rank, such that

K CU 'z KsU I

(2.2.5)

KP KC
s 0

The general solution of equations (2.2.5) is

KsUJ[CU1]1+X[Ir-CU(CU) X E R!"

(2.2.6)

P KIK C
so0

where A I denotes any 1-inverse of A* [32]. By assumption (A,C) is observable

and if CU; has rank Y<r one choice for (CU.) 1 is [(CU) T(CU)]- (CU ) T .

It should be noted that (CU,)I(CUQ)=L. If also (AQ) is observ-
able ~ ~ ~ ~ ~ ' then if RalBTo (A.,fl an ineM

able then K R B is of full rank since M >0, and the 1-inverse of Ks

may be taken to be K1 =KT (Ks J ) -I, which satisfies K K' =I . However, ifs ( whc s s m

(A,) is not observable, and in particular in the case of the minimum

1
energy problem, M and K need not be of full rank and the formula for K isenrypolm c s s

replaced by

Ks L ] Z , ZK Y = L1 K2j (2.2.7)

where K ER YER mx m , ZER n x n , and rank (KS) =p.

Since rank (Ir-CU2 (CU) 1)-r-h there are only m(r-A) degrees of

freedom in the matrix X in (2.2.6). To eliminate the redundancy let

* X is a 1-inverse of A if AXA=A.
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S ER(r)xr be of full rank and define Y ER x  -A(r- ) by X=YS. Also note

that since P is to be eventually multiplied on the left by Ks, the factor

KsK in (2.2.6) may be omitted. The expression for P then becomess s

P = U(CUI) 1C + K YS (I - CU ) C (2.2.8)

Defining the matrices:

A A - BKU (CU) C

B -BK K (=-Bif K is of full rank) (2.2.9)
1 10 s s s

C0 =S(I - CU (CU))C

and substituting (2.2.8) into (A-BKsP) gives the output feedback pole-

placement problem of finding Y ERm (r' 2 )such that the spectrum of A0 +BoYC 0

is satisfactory.

Since by construction Ao+B 0 YC0 contains an A dimensional

L7 invariant subspace it is possible to exploit this fact to reduce the di-

mensionality of the problem. Let T = [T I : T2J be any invertible matrix

with TI =U, and T2 ER(n ' ) x n . Applying the transformation T to the triple

(A0,Bo,Co) gives:

T A0 T = L 'A] , TB CoT=[0 C1] (2.2.10)

oR A ) n2)B'0

where A1 ER ( n - ) x ( n - 1 ) , B1 ER(n-A)x m , C1 ER r x (n-2 ). The pole-placement

problem to be solved is then that of satisfactorily shaping the spectrum of

AI +BIYC 1 by an appropriate Y ER(r - ). The final output feedback gain will
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be given by

1.1
KO = Ks U (CU) + YSII r _ CU1(CU (2.2.11)

and the corresponding projection matrix P by (2.2.8).

In summary equation (2.2.11) characterizes the m(r-1) degrees of

freedom available in solving the problem of retaining a prescribed

dimension invariant subspace of the optimal state regulator. The associated

pole-placement problem may be solved by any pole-placement procedure, but

in particular the dyadic solution for which software support has been

developed is appropriate.

If it is desired to retain an r dimensional invariant subspace of

the state feedback regulator, it is possible to choose K0,P so as to

additionally solve the modified output feedback regulator problem defined

in the previous section. Whereas in the case A<r it is only guaranteed

that using output feedback achieves the optimal state regulator cost in an

2 dimensional subspace, in the case I = r the output feedback control law

will also be optimal in the sense of the modified regulator problem.

In order to simplify the calculations it is assumed that a trans-

formation has been applied to the triple (A,B,C) such that C = [Ir 0].

Denote by Mc the solution of the state feedback Ricatti equation and by
r

M(L) the solution of the modified regulator problem. Let tuili= I and

X1% ~rl be r eigenvectors and eigenvalues of (A-BR'I1 BTMC) and introduce the

partitions:
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A11  A1 2  FI 21

A = A M BR'lBTM =
c C

A21 A22 F21 "22

L LT

L = 1 , K = Rl1BTMC = [K " K2]

L2 1  L2 2

" I Y N= Zy ', 
I r 0 (2.2.12)

(u . )T = Ur'
*r rr( J N

A1 1 , F L, Y ERrxr, KERmxr T defined in (2.2.2)

Then the following holds [31].

r Theorem 2.2.1: If the matrix Ar (A22 -ZY 'A1 2 ) has all its eigenvalues in

the left half plane then:

1) The modified output feedback regulator problem has a solution M(L)=M(N)

4 for each L satisfying , 1,11 = ZY = N, and the associated feedback

gain is given by

K=R-BTM(N)P = [K +K 01 (2.2.13)

2) The spectrum of the closed loop output feedback system A-BK is given

r
by iXi.1 Ur(Ad

3) The cost matrix M(N) may be decomposed as M(N) =Mc +D(N), D(N) >,

where D(N) represents the cost increase over the optimal state feedback

rsolution, and the null space of D is spanned by Luipi= so that in
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this r dimensional retained subspace there is no increase in cost

associated with using the output feedback control. D is given by

D N D 2 2 N N  D 22 D22 ER(n-r)x(n-r) (2.2.14)

where D2 =DT >0 is the solution of the Lyapunov equationwhr 22 = 22

(A2 2 -NA1 2 )T D2 2 +D 2 2 (A2 2 - NA12 ) + r 22 = 0 (2.2.15)Q

Furthermore the matrix D(N) provides a bound on the optimal cost

for the output feedback regulator problem. Defining Js as the cost associated

with the optimal state feedback regulator and J as the cost associated with

the optimal output feedback regulator then (31]

Js e J s + 7trace(DQo) (2.2.16)

In summary the problem of determining a gain to retain r optimal

eigenvectors has the unique solution K 0 =K1 +K2 N. It is noted that this is

precisely equation (2.2.11) under the constraints I = r and C = [Ir 0].

2.3. Retention of Optimal Invariant Subspaces by Dynamic Output Feedback

Compensation

In the event that it is not possible to stabilize the system by

static output feedback while retaining a desired I dimensional subspace of the

state feedback regulator,or that the spectrum of the resultant system is not

acceptable, a dynamic compensator of dimension p may be designed which will

retain an r +p dimersional subspace of the optimal state feedback regulator.

L
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In this section the derivation given in [1] of a design oriented approach

to the construction of such a compensator of prespecified dimension p will

be presented. This approach reduces the specification of the parameters

of the compensator to the solution of an output feedback pole-placement

problem similiar to that encountered in the previous section in the design

of static output feedback compensators. In the next chapter an algorithm

will be given which simultaneously solves this pole-placement problem and

determines without apriori assumptions the dimension of the desired compen-

sator.

Again for simplicity the output matrix is assumed to be in the

form Cf=[I 0]. Introducing the compensator i=Hz+Dy, RERxP, DERPxr

and momentarily assuming that the matrices H and D and the dimension p are

known, the compensator design problem may be treated as a pole placement

problem to which Theorem 2.2.1 may be applied. Defining the matrices:

H 

IA _] w D A a d(n+p)x(n+p)
A-1 I l~ 21L A o,--- -----

A12 22A

B =[§ e(n+p)xm ~ ~ I Lp 0 0 [I ](r+p)x(n+p)

(2.3.1)

andth ~ [0 Q] , ~ 0 ], R

adteaugmented state [2jj] the objective is to find an output feed-

back u-KC which retains an r +p dimensional subspace of the optimal

state feedback regulator associated with (A,B,Q,R) and which is optimal in

.4|
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the sense of the modified regulator problem.

Since the compensator state is not observable through 'lr the

solution of the state feedback regulator problem is

cL 0 Ks=Rl [ 0  BTMc] (2.3.2)

where M is the solution of the Ricatti equation associated with (A,B,Q,R).

c

Note however that if H is not stable, then (A, ') is not a detectable pair

and though optimal, the solution (2.3.2) will not be stabilizing. (See

remarks preceding equation (2.1.4).) This poses no difficulty in the design

methodology as the optimal closed loop system will then consist of the system

= (A-BR lBTMc)x driving an unstable open loop compensator. Even though

the compensator states will diverge, the plant response will be stable. The

implemented output feedback control law will stabilize the total closed loop

system.
n nn

Let [uin and iJi= 1 be the eigenvectors and eigenvalues ofii=l i~

the optimal state feedback regulator, where the first r+p eigenvectors span

the r+p dimensional subspace to be retained and (XrAr+l) and (r+p,% r+p+l)

are not complex pairs. Denote:

(u :..•" Ur)Tr - YER r r, ZER(nr)xr, T defined in (2.3.2)

U (n r

(ur 1  . up) - ], UER r x p , VER(nr)xp (2.3.3)

A r dg(X1 .X) Ap T-1 dg(Xr+ ... r+p)T

r  .. , A = r r

and define W ERPXP and W ERpxr by the eigenvector equationp r
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H D 0 W r W pW r W A0

0 F A A 0

F - BR' c (2.3.4)

By Theorem 2.2.1, stabilization of the system by output feedback of the

measured variables and the compensator states requires the selection of

RD and therefore W and W such that the matrix A has a satisfactory

spectrum where:

N = [Z V] [r W] -l [Np Nr ]  NpER(n - r)xp, NrER(nr)xr

A =A -N 0 A -NA(235r-22 LAl 2I 22"rA12 (2.3.5)

Using the formula for the inverse of a partitioned matrix the expression

for Ar may be written A1 + 0oPA12 wherce

- (n-r)x(n-r)
A 1 =A 2 2 -ZY A 1 2 1:R

B0 = V - ZY'U E R(n ' r)xp (2.3.6)

P - L(Y-UL) 1 ERpxr , L - W_1W ERpxr
p r

Thus the satisfaction of the condition of Theorem 2.2.1 that A have an
r

acceptable spectrum is reduced to the solution of an output feedback pole-

placement problem. In the next chapter this problem will be solved by an

algorithm which computes P as the sum of a sequence of dyadic feedbacks and



36

determines the compensator dimension p. It is noted here that the number

of columns of B0 is equal to the compensator dimension and that rank (B0 )

is always maximal since the columns of B0 are eigenvectors of a particular

matrix arising in the block triangularization of F [1].

Assuming that this pole-placement problem has been solved and that

the dimension p and the gain P are known, the parameters of the compensator

are given by:

H = WHW , H =[A -LA Y'1  [I +PUj

D = Wp D , Do  [LAr -A L]Yf[Ir +UP]

L = (I+PU) PY
(2.3.7)

-N N =(v-zY'U)(I+PU
Np po p po +PU)

N = ZY" - (V - ZY'U)Pr

Thus the matrix P determines the compensator up to a similarity transforma-

tion Wp which may be used to obtain a favorable representation of the pair

(H,D). The final closed loop spectrum consists of the r+p retained optimal

eigenvalues together with the spectrum of Ar

Before considering the solution of the pole-placement problem in

the next chapter some remarks regarding the resultant compensator dimension

p are appropriate.
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By Theorem 1.3, if pkn-2r+l then the spectrum of Ar may almost

always be assigned arbitrarily. Thus a bound on the dimension of compensator

required to satisfactorily control the system is n-2r+l. In the case this

bound is achieved, the resultant closed loop system will retain r+p--n-r+l

optimal eigenvectors and will admit an arbitrary complementary spectrum

through Ar . As will be seen in numerical examples in Chapter 4, acceptable

designs may be obtained with compensators of dimension well below this

bound, particularly when the goal is to place all the eigenvalues in a pre-

scribed region of the complex plane rather than at prescribed locations.

In the case p =n-r all n optimal eigenvectors will be retained

and the resultant compensator may be identified with the reduced order

Luenberger observer. To make the correspondence explicit consider an observer

given by [33]:

Ew+Gy+Ru , E ER(n-r)x(n-r), GER(nr)xr, RER(n-r) x m

x2 ff w+Sy . SE (2.3.8)

where x2 is an estimate of the unmeasured state variables x2 . (Recall

C-[I 0]). Defining an error e x-x and introducing the partitions:

A = B , AIIER
r

r, BIERr x m

(2.3.9)
F 11 F12 - T

F- F-A-BR B ML 21 F 2]
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it may be shown that

=Ee+ (A2 2 - SA1 2 - )x2 + (A2 1 -SA- 1 1  G+ES)x

+ (B2 -SB 1 - R)u (2.3.10)

Thus the error will converge asymtopically to zero independent of x and u

provided

E =A 2 2 -SAL 2

G = 21 - SAI11+A22S - SA 2S (2.3.11)

R -B 2 -SB1

and E is a stable matrix. Observability of (A,C) implies that the pair

(A22 A1 2) is observable and so the pole-placement problem for E has a

solution.

Implementing the control law as

r (K K ) - ( 2 r- :( K , K +K2 S) ()
(K1 K2 ) Rl3TMc  (2.3.12)

and using (2.3.11) the total closed loop system becomes

w 2SF 12  F 21-SF 11 +F22S-SF 12 S 0 w
d -B K A - B (K +K2S) A xI +

x 2 _B2K k21" B2 (K l+K2s) A2 x 2
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B j I (2.1.13)

B 
2

By comparison, the compensator of this section is of the form

Hv + Dy and may be viewed as producing an estimate x2 = NpV+NrY.

Under the control law

u=r-(O K1 K) P () = r- (K2N K +K2N 0) x)
2  x

(2.3.14)
the closed loop system is

d 4H D 0 v 0

d-BL N A
1

-B I (K I+ K2Nr) A x + B r

B2Np A2 1 B2 (K+I K2N ) A22 x2 B2

I (2.3.15)Provided Np  exists, then under the transformation (v,xl,x2 ) -(Np Vxlx 2)

(2.3.15) becomes

N NHN1 ND 0

dt -BlK All -B, (K +K2N) A1  ixl+FBr
L -B 2K2 A2 1 - B2 (K +K2 N) A2 2] X B2

(2.3.16)

Now in [1] it is shown that the transformation T EN upper

block triangularizes the optimal closed loop state feedback matrix provided

N-ZY exists and Lz] is a matrix of optimal eigenvectors of the closed
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loop system. Applying this result to the compensated system of this section

gives

7H D 07H D 0

T 0 FI11 F12 T_ F1 2Np FII+ FI2Nr F12 (2.3.17a)

F2 1 F2 2 ]LJ f(Np Nr 12g(Np Nr F22 "NrF12

where

I 0 0
pI

T 0 1r (2.3.17b)

p N r In _ r

f(NpN r  = (-Np RN 1F2-NrFI2)Np -0
p r p p 22 r12p

(2.3.17c)
g(Np,Nr) = (-N pD+F 21"NrF1+F 22N r-Nr F 2N) 0

Identifying S+-Nr and comparing (2.3.13) and (2.3.16) it follows

that the compensator of this section is a Luenberger reduced order observer

in an appropriate basis provided the reference input is zero. Furthermore

the dynamics of the error equation are governed by the matrix-

Ar = A2 2 -Nr A 2 =A, + B0PA1 2  (2.3.18)

whose eigenvalues may be arbitrarily assigned by state feedback pole-placement

since B0 is square and of full rank n-r.

0|
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CHAPTER 3

FURTHER ASPECTS OF THE DESIGN METHODOWOGY

3.1. An Algorithm Solving the Associated Pole-Placement Problem

This section presents an algorithm which solves the output feed-

back pole-placement problem of section 2.3, associated with the design of

compensators for suboptimal regulators. The problem is to determine the

compensator dimension p and a matrix P ERpxr such that the spectrum of A rr

A1 +BoPA 1 2 is satisfactory (see equation (2.3.6). A solution is obtained

here by iterating the proof of Theorem 1.3 in the manner suggested in [2].

Recalling that the number of columns of B0 is the dimension of the compensa-

tor, the idea is to start with B0 a column vector and successively increase

the column span of B0 , solving a partial pole-placement at each stage, until

satisfactory spectral characteristics are obtained for A . The degree of
r

the required compensator will then be the number of columns of B0 and the

parameters H,D,K zK y of the design will be given in function of P by (2.3.7).

The algorithm consists of the solution of a sequence of pole-

placement problems defined as follows. Given from the first part of the

design are the observable pair (A22 ,A12) and the optimal closed loop eigen-
values and eigenvectors nXiJil, (vininl where the X. are distinct. It

is assumed that the X i and vi have been ordered such that (% r ,r+l) is not a

complex pair and such that the matrix Y defined in (2.3.3) is invertible.

The ordering may also have taken into account the relative importance which

the designer may attach to the optimal eigenvalues. Define:
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(v , YER ZER(nr)xr, T defined in
rr] (2.2.2)

L.. --- n ]( .. VTuERXl ER(n-r)xlSvlr )T un-R vE

I (3. I.1)

bi =v -N u i , N =ZY'I B, -(b, b ) , i = l , . . . , n - r

Since A1 2 has the role of an output matrix and since it will be

required for the output matrix to have full rank in the pole-placement pro-

cedures to be described, denote I rank(A 2 ), let T ER Ax r be any matrix of

full rank, and define a new output matrix C =TA 2 . Also since the pole-

placement problem for the triple (A1,Bo,A1 2 ) may be solved as a state feed-

back pole-placement problem if A n-r, this case will be discussed at the

end of the section. Presently it will be assumed that Z+r <n.

The algorithm may be stated in terms of two pole-placement proce-

dures, to be defined below, as follows.

Algorithm

0. Initialize i =O.

i. Let i = i+l.

2. Using either procedure 1 or 2 below, compute a dyadic feedback

figx f ERl g.ERl (3.1.2)

to assign i +A -ldesired eigenvalues to the matrix:

Ai+l M Ai + BifigiC (3.1.3)

3. If the resultant spectrum of Ai+l is unsatisfactory or if the algorithm
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may not terminate because X' Xi+l is a complex pair, go to 1.

4. Let the compensator dimension be p =i and let

i f
S--ag-- - T , Ar=Ai+ (3.1.4) 0

0(i-j)xl

Since the spectrum of A may be assigned arbitrarily if p +AI -1 n-r thisr

algorithm will terminate after at most n-r-4+ stages.

Procedures 1 and 2 apply Theorem 1.3 to the systems (Ai,Bi,C) de-

fined by the algorithm. At the ith stage the system (Ai.,Bi,C) has i inputs

and I outputs. Thus, with possible exceptions due to the system lying on a

hypersurface on which the results of the theorem fail to hold, i+1 -1

eigenvalues of Ai+1 may be assigned arbitrarily closely to desired values.

The procedure then is to choose an input (or output) space projection which

reduces the system to a single-input (or single-output) system and renders

i- 1 eigenvalues uncontrollable (or 1-1 eigenvalues unobservable). These

eigenvalues correspond to eigenvalues already assigned during the (i-l)st

stage. Next feedback gains are computed to place at desired locations as

many additional eigenvalues as there are outputs (or inputs). Because

uncontrollable and/or unobservable eigenvalues are invariant under output

feedback this will result in the assignment of i+A-1 eigenvalues of the

matrix Ai+l. Both state space and frequency domain based procedures will be

given.

It will be assumed that (Al,b1 ) is a controllable pair, and there-

fore that each pair (Ai, Bi) is controllable. The case when (Al,b1 ) is

uncontrollable will be discussed at the end of the section.
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Procedure 1

The system (A,Bi,C) is transformed to the single-input system

(Ai,B BfC) where f. ER i x l is chosen to render i-I eigenvalues of A1

lx),
uncontrollable. A vector gE R is then found to place I eigenvalues of

Ai+l =A i+BifigiC. If i=l, then f l1-, and the first part of the procedure

is omitted.

State Space Solution

Let e k knl be the eigenvalues of Ai, the first i-l of which are

to be retained, and let L k vkER n be the corresponding left

eigenvectors. With Tr given by (2.2.2) define

T =TR V T (n-r-i+l)x (n-r)

1 r L 1(ixr 2 TrTL2 nisinn-th (3.1.5)

Recalling that an eigenvalue is uncontrollable if the corresponding left

eigenvector is in the null space of the input matrix, select a vector

ii- will be invariant under furtherf E R i x  satisying ViBf 0. Th n[ k}  --

feedback and for each k such that the kth entry of V2 Bif i is nonzero, the

elgenvalue e k+i. I will be controllable. A solution of V B if i =0 always

exists since this corresponds to iinding an i-vector orthogonal to (i-I)

i-vectors. However conditions under which the n-r-i+l remaining elgenvalues

will be controllable are not available.

Equations (1.5) and (1.6) determine the gain g, to place A eigen-

values of the triple (AiBifi, C) at desired locations tak kY, (If

entries of V2Bif i are nonzero with <1 then ; should be used in place of

2 in the following formulas.) Let the characteristic polynomial of Ai be
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n-r
k=O akXi , an =1 (3.1.6)

and define the matrices:

Bf " i"' n-r- f ER(n-r)x(n 'r)

Q - f aA B A. BifiE

S n-r-1 .  .. . .. .. a2  a1

1. ". a2

R . ". ." E R(n-r)x(n-r) (3.1.7)

:1.mt a 1••

a
n-r--

n-I - .... I TI- ... .

i = ** T r ER(nr)x, A = T ER(n-r+l ) x

1. ........ C1 
..... C

= (pO(Cl) ... , po(cr.))Tr (l,an~ ,. ,al,a,)S E R~ x

where Tr is given in (2.2.2). Then the solution gi of

gi(CQRS) - P (3.1.8)

iiSwill assign to the spectrum of A+ I = A i+B ifig91
C the I +i-i eigenvalues

and (C I 
.k

Frequency Domain Solution

The transfer function of the system (AiBiC) may be written



46
46

C (%I -Ai)B. =N(X) / d(x)

n-r (3.1.9)
d() = ak a =

k O 'k ' n-r

where the roots of d(X) are ekj n-r of which the first i-i are to bekal

retained. The numerator polynomial matrix may be written

ni 11(X) 1nj -k =

N(%) = n n (X)W n-r-l k (3.1.10)
=k=0 k

In n. f

n-r-l k nilk n uk

n Z. n I
n lk nlik

(In nijk the index i indicates the row of N(X), j the column of N(X), and k
the degree of the term of nij (k) in which nijk appears.)

Recall that the goal is to render i-l eigenvalues uncontrollable by

a choice of fi and to choose gi to place I eigenvalues. Since an eigenvalue

of a single-input system is uncontrollable if the numerator of the transfer
i-1

function is zero evaluated at that eigenvalue, it follows that for tekjk I

to be uncontrollable eigenvalues of the single-input system (Ai,Bifi c ) it

must hold that N(ek)fi 
= 0 for k=l,...,i-l. By Lemma 1.2 rank N(ek)=l.

Let j i-ibe any sequence such that the 4t
h row of N(ek) is nonzero, and

jk=l k k

define

ekN(e
1) 7ositio

M -- --= -- -I
eJ L1~ - k th position

i-1
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Then fi may be computed as the solution of

T TMf = 0 (3.1.12)

where T is given in (2.2.2). For purposes of numerical evaluation ther

rows of the matrix TrT may be obtained as

n-r-1
(1 e ... )N if k is real

1 Re( k) '....Re(ek) (3.1.13)

-- if (Ck,ek+l) is a complex

0 Im(ek),..., Im(¢k)nr pair

where

n j0n jiO
0 0 ER(n-r)xi( 3 .1.14)

n n I~nr1
It should be noted that the same difficulties regarding the choice of fi

are present here as in the state space solution. That is, M may be rank

deficient in which case there will be a multiplicity of choices for fi, and

not all the remaining eigenvalues t k[ need be controllable with respect

* to the pair (Ai,Bifi ). Their controllability may be verified by computing

the vectors N(Ck)fi.

To assign the eigenvalues tJkk=I  the gain g, is computed from

equation (1.31)-(1.35). Since the transfer function for the single input

system (Ai,Bifi, C) is

n-r-l
Ai)'Bifi k=0 /d() (3.1.15)
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define xk Nk fiv k 0,...,n-rl1. Also let p (x)P 1(%) P2(X where

plXk ( ak d= dX k, d =1 (3.1.16)

12(Xk=O k) hnr£ k

Then g is determined from the (n-r)th order system of equations

(g : h) X =Y , h =(h h1 h**

*~ ......... .. .. . .. . . ...1 . ... 0 RX~ ~ r

do: n1 .t- :l
0 d....... d ; 10..0

0 0.R nr~~lr

Y=(a 1, ... a -( ... r-ddl
0 n-r-l 0 . 0 d d

The remaining spectrum of Ai+ is determined as the roots of the polynomial

If ; eigenvalues of (AiBif i ) are controllable with § < then in

general (3.1.17) will be inconsistent and must be modified by replacing£

with 9.

To illustrate the notation consider an example.

Example 3.a.l: Suppose the system (Ai,Bi,C) at the ith stage of the algorithm

is given by

ri

Ai
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0 1 0 0 1 0 [0
1 0 0 0

0-2 1 0 00 0
0 0 0 1 0 1

0 0 1 0

0 0 0 1 1 0

n-r = 4, i 2, A = 3 (3.1.18)

The transfer function is-

_1- %. _2% l 2 .

C(XI-A2 ) B2 -
2 (l)(X+2) % 3 + 2

3 NkXk/d(X)k=0 Nk~k /d (3.1.19)

02 1o ol01NO 0 0, NI= 1 ,- N 2  0 1 N 3  0

To render the pole at -2 uncontrollable an f2 ER must be found satisfying

(1 -2 4 -8)N 1 f 2 - 0, -N = (3.1.20)

To 1 0

This has solution f2 = (3,1)T and the resulting transfer function for the

single input system (A2 ,B2 f2, C) is

-3 (3 ) X2(.
C (;NI -A A2 )  B2f 2 dX x + 1 2 " 0

(3.1.21)
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If the remaining poles are to be placed at -l+jl, -3, the desired partial

characteristic equation is pl(k) -X 3+5%2 +8A+6. Equation (3.1.15)

becomes

2 -5 3 3

0 2 1 0
[g 2 :h] =(0 0 -2 1)-(0 :6 8 5)

0 4 4 1 (3.1.22)

6 8 5 1

and has solution g2 = (-6, -50, 12), ho =2. The eigenvalues of A3 may be

verified to be -l+lj, -3 together with the root -2 of X+h o . 3

Procedure 2

The procedure is the dual of Procedure 1. The idea is to transform

the system (Ai,Bi,C) to the single-output system (Ai,B. i,C ) where g XiERlx

is chosen to render A-1 eigenvalues of Ai unobservable. A vector fi ER ix l

is then found to place i eigenvalues of Ai+1 Ai +BifigiC. If A=1 then

the first part of the procedure is omitted.

State Space Solution

Let t9k k=1 be the eigenvalues of A, the first .9- 1 of which are

to be retained, and let [Vkvnr, vkER be the corresponding eigenvectors.

Define

V= (v v... V )TER(nr)x( )

(3.1.23)

vV )TE R(n-r)x(n-r-A +1)

To~ rede r¢} -

To render Lc 1 unobservable select g, such that g CV, -0. The observ-

kk-I. ii

ability of the remaining eigenvalues may be checked by computing the vector
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giCV2 •

Let $Iakkl be the i desired eigenvalues to be assigned to Ai+ I

by fi. By the dual of equations (1.5), (1.6) fi is given by (SRQBi)fiP

where:

n-r kPo(X) =IlXAiI -k=0 akXk , an~ =1

n-r-ln-r

..... 1. 1
T  ERixn -r S=TT ERixn r + 1
S 7] ER T r E R

n-r-i -r... . i aa
~(3.1.24)

p(a I  i gic

T = ixl x-P Tr a an_-r-l E R f  gi CA i E Rn r n r

a10
a 0

€ I

a 1  a 2 . a nrl 1

an-r- n.r-1

If eigenvalues of A i are observable with t <i then should be used in

place of i in (3.1.24).

Frequency Domain Solution

Let the transfer function of (Ai,Bi,C) be given by (3.1.9),

(3.1.10), and let the eigenvalues of A~ be te n-r the first A -1 of which

i k-



52

are to be rendered unobservable by the selection of gi" Then g, must

satisfy

giN(ek ) =0 ,kffi(3.1.25)

and may be obtained as the solution of giMTr -0 where the kth column of M

is a linearly independent column of N(ek), kl,...,-l. If j k=l is a
th

sequence such that the tk column of N(Ck) is nonzero then the columns ofsequenc

MTr may be computed as

N. k if C is realKk . k
n-r-l
k

(3.1.26)

71 0 7

J Re()) if ek, ek+l) are a complex pair
k -r-l In(-r-

where

lj0 ........ nlj(n-r-1)

TN - ; (3.1.27)
[.j 0 ........ n j(n-r-

To assign the eigenvalues i the gain f is computed from

the dual of equations (1.31)-(1.35). The transfer function of the single-

output system (AiBigiC) is

n-r-l k
gi C(%I-A i )B= k =0 giNk k/ d(k) (3.1.28)
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Define xk-i k =0,...,n-r-l and let p X p(~ 2 X where

P1 0.) k (Okk0dX di 1
n~ -ri k k (3.1.2 9)

(2 )E hX h I~
k=0 k ' n-r-i

Then f is the solution of

f T=Y h ( 0  h. .hn-r-ii

*~ I0. a0  0

d d .a 11 0.

dj d 1 . 0.0

X*d 1 d 1(3.1.30)

! d L* -- d

.. .1

If eigenvalues of A. are observable with <i then should be used in-

stead of i in equation (3.1.30).

In the discussion of Procedures 1 and 2 it has been assumed that

A <n-r. In the case that Aztn-r the spectrum of A1 may be assigned by

state feedback and the algorithm will end at the first stage. Let PERl~

be a vector assigning a desired spectrum to A r-A 1+b 1P'. Then P may be

taken to be any solution of

PT 2= P1 (3.1.31)
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and the degree of the required compensator will be one. Equation (3.1.31)

always has a solution, being a set of n-r equations in Y unknowns.

If (Al,bI) is not controllable the algorithm may still be applied

only with the distinction that at the ith stage any uncontrollable eigen-

values of (Ai,Bi) will be contained in the spectrum of Ai+1 in addition to

those placed by the designer. This may be used to advantage if the uncontrolla-

ble eigenvalues are "acceptable". If they are not then it may be

advantageous to choose a different ordering of the eigenvectors Ikk l of

the orginal system. It should be noted that the system (An-r Bn-r C) is

controllable since the columns of Bn-r span 0
-r [1]. The algorithm will

therefore eventually reach a stage where (Ai,Bi,C) is controllable regard-

less of the ordering of the eigenvectors.

In summary, this algorithm, when incorporated into the methodology

for designing low order dynamic regulators, determines the degree and

implicitly the parameters of the required compensator that shapes the entire

spectrum of the resulting closed loop system. This is achieved by computing

a feedback matrix P as a sum of dyadic products such that the spectrum of

Ar = A1 + BO PA 12 is satisfactory. The spectrum of the total closed loop sys-

tem is then determined as the spectrum of Ar together with those eigenvalues

corresponding to the selected NO and (bkkl, and the parameters of the

compensator are fixed as functions of P.

3.2. Review of the Design Methodology

Before considering several numerical examples in the next chapter,

it may be useful to summarize the design methodology that has been presented.
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Because the information structure of most linear systems prohibits

the implementation of optimal control laws based on state feedback, a design

criterion has been defined to be the construction of suboptimal control laws

that retain as large an invariant subspace of an optimal state regulator

as possible in the resulting closed loop system.

f jA preliminary study of the system should, in addition to an

identification of the controllability and observability structure, include

SI an analysis of the possibility of satisfactorily shaping the closed loop

spectrum by static output feedback. As will be seen in the examples, in-

sight helpful inthe selection of A and A may be gleamed from such anr p

analysis.

Having defined a state feedback regulator problem through the

selection of weighting matrices Q,R, the Ricatti equation must be solved

and the resultant closed loop eigenvectors and eigenvalues computed. The

possible choices for Ar will be no more than C(n,r), and by inspection of

the optimal eigenvectors may be easily identified in accordance with the

requirement that complex pairs not be split and that the matrix Y be in-

vertible. On the basis of the spectra of the resultant matrices Al, r

eigenvalues must be selected for retention. If none of the spectra are

acceptable, and a compensator is to be designed, then this choice may be

guided by an "identification" of those elgenvalues which have contributed

most to the unacceptability of the spectrum of A1 , in their departure under

output feedback from their optimal locations. The selection of A may also
r

be based on information obtained from the preliminary pole-placement

analysis, or on the retention of dominant eigenvalues.

L .... . ._ _
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When this first part of the design is completed, a decision must

be made whether to improve the dynamics .,f the system by retaining p

additional optimal eigenvectors through the introduction of a dynamic com-

pensator or by reducing the number of retained eigenvectors from r to L <r.

Because the preliminary static output feedback pole-placement problem

corresponds to the case . =A0, unless this problem had a satisfactory solution

the design of a dynamic compensator should be undertaken.

If a compensator is to be designed, the remaining n-r eigenvalues

must be ordered, the vectors b. computed, and the pole-placement problem for
L

the triple (AI,B0,A1 2) solved. This ordering may again be based on the

desire to retain at their optimal locations those eigenvalues most contribut-

ing to the unacceptability of the spectrum of the matrix AI corresponding to

the selected A . It would be desirable to also take into consideration the
r

controllability properties of the pairs (Ai,Bi), but a convenient criterion

for ordering the vectors bi to enhance the solvability of the pole-placement

problem is unfortunately not available. The pole-placement problem is

solved by computing a sequence of dyadic feedbacks, at each stage increasing

by one the number of optimal eigenvectors retained (as well as the number of

assignable eigenvalues of Ar and the number of columns of B ), until a

satisfactory tradeoff is achieved between the spectrum of Ar and the dimension

p of the compensator. At each stage of the algorithm certain previously

assigned eigenvalues are chosen to be retained and a number of additional

eigenvalues of Ar are specified. This provides the designer with consider-

able freedom to meet design specifications for the n-(r+p) remaining eigen-

values of the eventual closed loop system. In particular though arbitrary

pole-placement for the matrix will not be possible if p <n-2r+l, this
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freedom may be used to place the eigenvalues of Ar in desired regions of the

complex plane, as may be determined for example by minimum damping ratio

requirements, or other considerations.

Once the pole-placement problem has been solved satisfactorily,

the dimension of the desired compensator has been determined and the param-

eters H,D,Kz ,Ky may be computed in any convenient basis, completing the

design procedure.

The computational aspects of the design procedure are straight

forward, involving only the solution of eigenvector equations, the solution

of linear systems of equations, and associated algebraic manipulations.

Following a transformation of basis to bring the output matrix to the form

(Ir  0], the solution of a Ricatti equation, and the determination of the

optimal eigenvectors, at most C(n,r) eigenvalue calculations are required

to compute the spectra of the matrices A1. The solution of the pole-

placement problem by state space procedures requires at each stage the

computation of the left (or right) eigenvectors and the characteristic equa-

tion of AV the solution of a homogeneous system of equations of order r

(or i) to determine fi (or gi) and finally the solution of an inhomogenous

system of equations of order i (or r) to find gi (or f,). As the pole-

placement problem is solved interactively, allowing for the repeated execution

of each stage of the algorithm until the designer is satisfied with the

spectrum of A I' the solution may be costly if the dimension n-r of A. is
1+ 1 13.

large and many repetitions aze employed.

The final computation of the parameters of the compensator in-

volves only the algebraic manipulation of matrices.
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The design methodology will be illustrated by several nontrivial

examples in the next chapter.

3.3. Extension to Stabilizable Systems

Although it has been assumed that the triple (A,B,C) is controlla-

ble and observable, this restriction may be relaxed. In this section the

application of the design methodology to the class of observable, stabiliz-

able systems (A,B,C) is considered and it is shown that for such systems the

dynamic compensator of section 2.3 possesses a separation property.

Let the system be represented in the canonic form

d 1 nl n2 xl
d-tf + UP X 1 E R ,x2 -E R

LX _ A 1  A2 L. 2 B

(3.3.1)

A = (Cl C2) (1:
\x2

A A I

where is a stable matrix, the triple (A22,B2,C2) is controllable and

observable, and the pair (A11,C1) is observable.

Consider first the solution of the state feedback regulator problem

for this system. It may be assumed without loss of generality that R =I

(under a transformation V u). Compatibly partitioning the solution M

of the Ricatti equation (2.1.2) gives the three equations:

22M22 + M2 2 A2 2 - M2 2 a 2 "2 M22 +Q22 = 0

T AT
(A22 - M2 2 ' 2 B2 )M2 1 +M2 1All + (Q2 1 +M2 2 A2 1) 

f 0 (3.3.2)
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AIIM 11 +Mfl1 + BT TT
2 1  M 1B2B2 M2 +Q l l)

the first of which is the Ricatti equation for the subsystem (Z2 2,I2) with

penalty Q2 2 ' The optimal control is then

u---(K1i 2) L K2) = 2M21 B M22) (3.3.3)

and the closed loop matrix is

ll o7

F = , F .1 A2 1 -BK91 (3.3.4)
F21 F2 2  F22 = A2 2  2)

Thus the optimal control has the property that the controllable subsystem

F2 2 is the optimal closed loop system matrix for the pair (A2 2,B2) with

penalty Q22 . The optimal control shapes the dynamics of A22 exactly the

same as if there were no driving uncontrollable subsystem (A =0), but also

expends energy in shaping the eigenvectors (and therefore the response) of

the uncontrollable state variables. This is true even if the uncontrollable

states are not penalized (Q =dg(O Q22 )).

Let the controllable and uncontrollable eigenvalues of the optimal

closed loop system beiol
{( )if= 0 (F2 2) (3.3.5)

The optimal controllable eigenvectors may be written explicitly as
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L F 22v = vi C ifl,...,n2  (3.3.6)

and the uncontrollable eigenvectors have the form

U U, U. C.S. i=I,...,n1  (3.3.7)

c F2 2vi v cv i F 2 Ui + F =2v i

In order to apply the methodology for the design of dynamic compensators it

is necessary that the matrix Y in equation (2.3.3) be invertible. In an

arbitrary basis this requires the selection of r eigenvectors such that the

matrix CU appearing in equation (2.2.11) is invertible. Assuming that a

design criterion is the retention of as many optimal controllable eigen-

vectors as possible, the maximum number of controllable eigenvectors which

may be retained in Ar is therefore r2 where

rank .... v ) (3.3.8)
2 - akC2l 1 n

n2

Since the pair (A2 2 ,C2) is observable and the vectors vic span R 2 (3.3.8)

simplyfies to r2 =rank(C2 ). Thus r2 controllable eigenvectors may be

retained in A, and the remaining rI =r-r2 eigenvectors must be selected

from the uncontrollable subsystem.

To obtain the separation property for the compensator, the output

matrix is first transformed to [I : 0]. Let rank (C2 ) r2 and let S be any

full rank output-space transformation such that
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SC 2  rank (C 22
)  r2  (3.3.9)

Then under the transformation y =Sy the output matrix takes the form

r 1 xr Ir 2xr211 CR  C2 2 ER rI+r 2 = r

21 (22 (3.3.10)1
Now let T1 and T2 be any matrices such that the transformation x' =T2 is

I invertible where

T 1 0 2

T ..... .. ..... (3.3.11)
C2 1  C22

Under this transformation the system (3.3.1) becomes

d'' + u(3.3.12)

' -1 A 22 xB'

rI

y=

[L : r2 xL
Introduce the partitions:
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A lA A 12  A 31  A32  2 K 3 A 34Al -1 A2' A'2

A21 A2 2  A41  A4 2 3 4

(3.3.13)
B 3 x1C 1

Erl _ n-r xl r xlxl 1 R Rc c 2 "r 2 xl

xI C x2 E R x 1 R x2 ER

Then under the permutation of states:

x I 0 0 0

x r2 =i f  (3.3.14)
x c 0 0 0 0 I

n2-r
2

the system is represented as:

Al1 0 A12 0 0

d A31 A33 A 32  A3 4  Bdt x + u (3.3.15)
A21 0 A22 0 0

A41 A43 A42 A44 j B2

00 0

y x
0 r2 0 0

In this basis the controllable and uncontrollable optimal closed loop eigen-

vectors have the form:
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07

0 043. 3 2 u-2_

1 4i Iw 4 iL 4

_ i(3.3.16)
34 i vi

c

i
At the first stage of the design it is necessary to select Y,Z and

to compute a(A1). From (3.3.8) and the structure of the output matrix in

(3.3.15) it follows that at most r2 controllable eigenvectors may be retained

in Y. In accordance with the design criterion of retaining as many optimal

controllable eigenvectors as possible, let:

71 0 Y = [I I... l ]  ,Yc 1 [03 " 3

Y~ i y2 c = [w3 ... u3  (3.3.17)

zz [C 0 [¢ ... .24l r 2- Z2c 1

zL c z2 C Z 1 [w ... U4rl

0 10
Ui = i~ 2 v =i L- i+r21 i2-l,...,n 2 -r 2

i+ (n 2 -r 2 ) Ii+rl =vi+(n2" r2 )  i+r 1,.,l1L VL4

Then from equation (3.1.1):
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oN 0' N 0 Zl1(Yl1

N0N21 No N21 =  
2 F(Y17) l 1 z2C(Y2 c Y 2 T(Y 1)Z

N 0 c 2 c 4

0 cl , . . n 2 -r 2  bi c , 3 "+ 2 N o c 4 i 2 ( 3 . 3 . 1 8 )
- i+r-n2  - i+r-n2b.= b i =NW2  N Wl

Lio i+r-n 2  i+r-n 2

be i.n 2 -. r 2 + , . . . , n - r  b, '4 .N21 W2 -N

i+r-n2

-N AA22 0 A2
A1 . 2 K (N2lAl 2+No A3 2 ) A44-N A 3

1

n -r n -r
Note that the vectors b.c and b span R 1  and R 2 respectively (see

remarks following (2.3.6)).

Assuming that only controllable eigenvalues are to be retained in

Ap, define Bi = [blc bi c ] . Then the pole-placement problem is that of

finding a feedback P -[P 1 P2 to satisfactorily assign the spectrum of

Ar - A + (P1 P2 )  (3.3.19)
r i (A 32  A3 4

It should be noted that Ar contains an uncontrollable subsystem A22 -No A1 2

whose spectrum is the n1 -r 1 uncontrollable eigenvalues not retained in A .
1 rpr

The remaining spectrum of A rmay be shaped by solving a pole-placement
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problem for the triple (A4-N0 C A34 ' Bi) A34).

Assuming the solution of this reduced pole-placement problem is

P ,the required compensator parameters may be computed from equation (2.3.7)

with P -[0 P 2]. Let:

1+r 2  r 2+p l+r 2  p-r 2
U2 = [03 ... 03 12 V 2  [04  ... 04 1

(3.3.20)

B 0= [bi ... b p ] Ar =dg (Ar1A2

where Ar1 2 Ar correspond to the r1 uncontrollable and r2 controllable

eigenvalues retained in the first stage. Then it may be shown that.

*c c Lc cI
Ho = H 0 H 0 =[A-LAr (Y 2 U2]1+

D c c l
Do [ 0 D0 Do [LcA r L-Ar 2 )(Y2 )yc () (I 22

(3.3.21)

[I+ 2 2 J 2y2 c [I +P2 U2 ] ~2~

N L: ] N pc = [V 2 ~Noc U 21[1+P 2U2] = Bo'[I +P2U21

21- NJ ' Nr N 0c(V 2 N 0c 2 )P2 =NcBP

Partitioning the optimal state feedback gains in this basis as K=-[K, K(]

K- [ ( 1 K1 1 K2 -~ [ K 1 2c], the suboptimal feedback gains are given by:
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Ky = K1+KN r -[Ky c K yc

Kz 
z Np = Kz c

Ky = K +- No + KCN21 (3.3.22)

K y = K 2
c + 2 N r c

Kzc = K2CNC

It is noted that K is independent of the solution P of the pole-placement
y

problem.

By the superposition principle for linear systems, the controller

may be represented as two compensators in parallel:

=u +uc (3.3.21a)

c = v + K c c "c Cvc+ c c
U CK z v + K y V = H 0  ov+D0 

y  (3.3.21b)

Z c c c c E c c c cu MK v +K y , v = Ho0v +D y (3.3.21c)

The compensator given in (3.3.21b) is precisely that compensator which

would have been designed if the controllable and observable subsystem

B1 ( : 0)) were operating in isolation. The second compensator

(3.3.21c) represents a modification in the control scheme due to the presence

of the driving uncontrollable subsystem A 1 . A block diagram of this con-

troller is given in Figure 3.3.1.

In summary it has been shown that the design methodology may be

applied to stabilizable systems, and that the resultant compensator satisfies

a separation property. It is noted that the restriction that the system be
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For controllable systems the compensator of (2.3.7) has the block diagram:

K

HO

For stabilizable systems the compensator of (3.3.21), (3.3.22) has the block

diagram:

Figure 3.3.1. Compensator structure for controllable and stabilizable systems

Z~
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observable may be relaxed provided the designer ensures that the matrix Y

in (2.3.3) is invertible.

3.4. Software Support

The examples in the next chapter were solved using an interactive

Fortran program DSGN-FOR written to implement the methodology described in

this thesis. The algorithm solving the pole-placement problem was implemented

using the state space formulations of Procedures land 2. A flow chart for

the program is given in Figure 3.4.l.The user is assumed to have previously

obtained the solution Mc to the Ricatti equation and to have stored on disc

in column major order the matrices A, B, R, Mc in a basis representation in

which C = [I 01. The matrix Q is not needed.
r

All eigenvalue and eigenvector calculations are performed using

the IMSL subroutine EIGRF, which returns an estimate (on the user's console)

of the accuracy of the computed eigenvectors. The eigenvector computation

is satisfactory if this estimate is less than one, fair if between one and

100, and poor if over 100. The eigenvalues are then ordered by increasing

real part, and their corresponding eigenvectors are normalized to unit

length. In the case of a complex eigenvalue, the corresponding eigenvector

is represented in its real and imaginary parts and is only determined to

within a complex multiplicative constant cos a +j sin e. All matrix

inversions are performed using the IMSL subroutine LINV2F which also returns

an error code which should be zero.

In the solution of the pole-placement problem for Ar = A1 +B oPA12

the vectors fi are computed as zero eigenvectors of the matrices obtained by

augmenting the homogeneous systems ViBif, =0 with a zero row. The vectorsaugmntin thehomoeneos syte 1 V 1~
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gi are computed as the solutions of the square inhomogeneous systems

(CQRS)T gT using the subroutine LINEQ available from [34]. The routine

returns a condition number for the coefficient matrix which is typed on the

userls console.

All output is to the lineprinter only, though the user has the

possibility of suppressing the listing of any undesired data.
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CHAPTER 4

EXAMPLES

4.1. Saturn V Booster Mudel

In this example a second order compensator is designed for a

seventh order, single-input, two-output model of a Saturn V booster. The

model has appeared in three articles [23],[241,[35] on output feedback pole-

placement in which numerical algorithms were employed to stabilize the

system. In [24] and [351 the real part of the least stable eigenvalue

of the closed loop system was minimized by two different methods and in

[23] the eigenvalues of the closed loop system were constrained to lie in

a prescribed region of the complex plane.

The model is given by i-Ax+ Bu, y= Cx where A,B,C are given in

Table 4.1.1.

As a preliminary analysis the possibility of stabilizing the

system by output feedback was considered. In both [23] and [24] the real

part of the least stable eigenvalue was required to be less than -0.07, and

this resulted in a damping ratio* of less than 0.02 (n= 890 ). Relaxing

the requirement that all the eigenvalues of the closed loop system lie to

the left of o=-0.07, and attempting instead to increase the damping ratio,

the results given in Table 4.1.2 were obtained using the pole-placement

subroutine of the compensator design software. The damping ratio has been

increased to 0.1 (0i= 840) while the least stable eigenvalue has been shifted

,
The damping ratio of a stable matrix A is here taken to mean the

smallest damping ratio of all the complex eigenvalues of
A: min {-a/,lau--}. The associated angle 1= cos-l is measured

a+J wo (A)
from the negative real axis.
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Table 4.1.1. System matrices for the Saturn V booster model

The model is :k= Ax+Bu, y=Cx

0F1 0 0 0 01 0
0 0 0.2 -0.65 -0.002 2.6 00

-.14 1 -0.041 0.002 -0.015 -0.033 0 0
A 0 0 0 0 1 0 0 B= 0

0 0 0 -50 -0.13 255.0 0 0
0 0 0 0 0 0 1~ 0

La0 0 0 -50.0 -10. 1

C l 1 0 0 0 ol00 [ 1 0 0 00 0 o1

Table 4.1.2. Comparison of static output feedback compensator
designs for the Saturn V boosters Solution using

Here F = A-BKC
Solution using

Sirensa and Choi Miller, et. al. PPL subroutine

K (-20.31, -16.56) (-26.68,-16.27) (-152.541,-42.623)

1. (-4.841, 5.433) (-4.823, 5.401) (-4.340, 6.018)
2. (-4.841,-5.433) (-4.823,-5.401) (-4.340,-6.018)
3. (-0.125, 0.497) (-0.118, 0.642) (-0.471, 4.683)

a(F) 4. (-0.125,-0.497) (-0.118,-0.642) (-0. 471,-4.683)
5. (-0.098, 0 ) (-0.105, 6.204) (-0.250, 2.400)
6. (-0.070, 6.204) (-0.105,-6.204) (-0.250,-2.400)
7. (-0.070,-6.204) (-0.078, 0 ) (-0.050, 0 )

0.0113 0.0169 0.1001
890 890 840

ALL
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to -0.05. The gains required to achieve this solution are large given

the slight improvement in the pattern of the closed loop spectrum over

the solutions of [23] and [24].

In view of these results a linear quadratic regulator problem

was formulated with the expectation that a low order compensator would be

required to satisfactorily shape the dynamics of the final closed loop

system. Solving the state feedback regulator problem with Q = a C and R=1

for a few values of a indicated that unless a were of the order of 103 or

10 4, the optimal solution would possess a complex pair with a small damping

ratio, and this led to the selection of •

R 0.01 Q = ]C. (4.1.1)

The solution of the state feedback regulator problem for this choice of

Q and R is given in Tables 4.1.3 and 4.1.4. In comparison to the minimum

energy solution (Q=0, R=I) which simply reflects the unstable eigenvalues

about the imaginary axis, this optimal regulator has perturbed the eigen-

values at -5+j5 and -0.014 only slightly to X1, X2, and X7 ' whereas the

pair -0.065+j6.708 has been moved to the pair X5,9X6 and the two real

eigenvalues -0.475 and -0.420 have formed a complex pair and moved to

X3$X4 (see Figure 4.1.1). It is noted that the least stable eigenvalue is

very near an invariant zero of the system.

Since r=2 and the optimal spectrum of F contains three complex

pairs of eigenvalues there are only three choices for A . Computing the
r

A survey of the literature on zeros of linear time-invariant
multivariable systems is available in [36].
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Table 4.1.3. Open loop eigenvalues, optimal closed loop eigenvalues,
and invariant zeros of the Saturn V booster

Open Loop Spectrum Closed Loop Spectrum Invariant Zeros

1. (-5.000, 5.000) (-5.106, 4.483) (-4.327, 0)
2. (-5.000,-5.000) (-5.106,-4.483) (-0.0462, 0)
3. (-0.475, 0.000) (-2.305, 7.648) (4.401, 0)
4. (-0.065, 6.708) (-2.305,-7.648)
5. (-0.065,-6.708) (-1.757, 0.820)
6. ( 0.014, 0.000) (-1.757,-0.820)
7. ( 0.420, 0.000) (-0.046, 0.000)
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Table 4.1.4. Optimal state feedback regulator solution

The Riccati solution is M

620.881 326.193 11.062 -11.812 -4.778 -40.707 -2.2351
326.188 305.860 23.048 -9.677 -4.775 -48.934 -2.826
11.061 23.047 10.431 -0.461 -0.384 -4.713 -0.289

-11.812 -9.677 -0.461 0.510 0.140 0.336 -0.013
-4.778 -4.775 -0.384 0.140 0.082 0.988 0.054
-40.705 -48.933 -4.713 0.335 0.988 18.839 1.158
L-2.235 -2.826 -0.289 -0.013 0.054 1.158 0.082.

K=RlBTM
C

[-223.486 -282.557 -28.919 -1.343 5.370 115.817 8.211]

The closed loop matrix is F =A-BK=

0.000 1.000 0.000 0.000 0.000 0.000 0.0001
0.000 0.000 0.200 -0.650 -0.002 2.600 0.000
-.014 1.000 -0.041 0.0002 -0.015 -0.033 0.000

0.000 0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 -45.000 -0.130 255.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 1.0001
L2346 282.557 28.919 1.343 -5.370 -165.817 -18.211j

The optimal eigenvectors are:

0.001 0.001 -0.00f 0.000 -0.021 I 0.000
-0.010 -0.003 0.004 -0.012 0.037~ -0.018

A1  0.000 -0.001 VA = 0.000 0.000 VA -- 0.024, 0.005vX92=0.026 ±j 0.138 v.3 =- 0.122 ±i -0.014 vX5X6=0.204 +j -0.401
-0.755 I-0.587 0.388 -0.903 -0.030~ 0.872

0.030' L 0.023 J0.0021 L 0.017 0.033 -0.076
-0L5 0.018 L-0.3 L-0.022 0.0J 0.162

-0.000
0.000
0.685

VA 7 0.717
-0.033
0. 1261

L-0. 006J
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Figure 4.1.1. open loop and optimal closed loop spectra and invariant zeros

of the Saturn V booster
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matrices A, and their spectra shows that in each case A is unstable and

so as expected a compensator will be required to stabilize the system.

The data for this first stage of the design are given in Table 4.1.5, and

Figure 4.1.2. In all three cases it should be noted that there is an

eigenvalue very near the invariant zero at -0.046. It is therefore expected

that in designing a dynamic compensator the spectrum of A will "likely"r

contain an eigenvalue near this location. Hence A should not containP

7 -0.046 but rather eigenvalues which depart more from their optimal

locations under static output feedback (see Figure 4.1.2).

This was confirmed as it was not possible to design a first order

compensator by stabilizing Ar for any of the orderings (Ak, Xk+l,7),

k= 1,3,5. Using two columns of B however, A was easily stabilized foro r

several choices of A and A . Two compensators based on the orderings
r p

SA 2X5 6 and 3 4 5A6 will be discussed here. In both designs the spectrum

of A was shaped in accordance with two criteria: first that as many eigen-r

values as possible be placed at the locations of the n-r-p unretained

optimal eigenvalues, and second that the damping ratio of A (as definedo

above) be no less than that of the optimal solution. In view of the latter

requirement it is noted that the damping ratio of the optimal closed loop

system is O0.289 (T= 73 ).

Retaining XA 2 and ordering the remaining eigenvalues

A6A 3 A349 with the real eigenvalue A7 placed third in anticipation of

designing either a second or a third order compensator, the pole-placement

subroutine was used to place the spectrum of A r. Since the first row of A1 2

is all zeros it was necessary to introduce P T, T- (0,1) and to solve

the pole-placement problem
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Table 4.1.5. Data for various choices of Ar

Based on retention of 2

The spectrum of A is:

1. ( -0.194, 7.095) -0.771 -0.1131
2. ( -0.194, -7.095) [128.864 8.119

3. (-0.065, 0.000) N 0 -374.840 45.949I

4. (0.247, 0.729) oL14.231 -1.854

5. (0,247, -0.729) 85.580 33.161J

0.018 -0.073 -0.015 0.260 0.0001
-.624 5.278 1.016 -21.111 0.000

A 1i-9.190 -15.133 -0.038 135.534 0.000

0.371 -1.205 -0.004 4.820 1.000
-662 21.555 0.066 -136.220 -10.000 j

Based on retention of X 3 x 4

The spectrum of A, is:

1. (-4.767, 3.087) F-0.168 -0.0211

3. (-0.047, 0.000) N -79. 796 74.516

4. (2.010, 2.973) 0 -4.519 -1.401

5. (2.010, -2.973) 89.397 1.9391

F 0.037 -0.014 -0.015 0.022 0.000
-0.250 0.813 1.003 -3.252 0.000

-,14.903 3.436 0.019 61.257 0.000
1 0.280 -0.911 -.003 3.643 1.0001

Based on retention of V6

The spectrum of A1 is:

1. ( -5.565, 8.109) 0.630 ~0.2841

2. ( -5.565, -8.109) L30.743 23.080

4. ( 2.261, 4.187) 0 6.124 4.401

5. ( 2.261, -4.187) -16.553 -9.346]

0.016 -0.184 -0.016 0.704 0.0001
-4.616 15.002 1.046 -60.009 0.000

A,= 10. 076 -77.746 -0.231 385.985 0.000
-0.880 2.861 0.009 -11.443 1.000

1.869 -6.075 -0.019 -25.702 -10.0001
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Ar -A 1 + B0P(TA 12 ) E Rx. (4.1.2)

Thus at the ith stage of the algorithm only i poles could be arbitrarily

assigned. Since at least two columns of B were to be used, at the first0

stage a real pole was arbitrarily placed at -2 using Procedure 1. Then

using Procedure 2 a complex pair was placed at -1 + j3.5 (E= 0.275,

n 740 ) resulting in another complex pair at -1.625+j5.41 (E- 0.288,

n = 730 ) and a real pole very near X (and the invariant zero at -0.0462).
7

Attempts at placing poles near X3,X4 resulted in an unstable A r . In view

of the criteria above, this solution of the pole-placement problem was

satisfactory and the degree of the required compensator taken to be p= 2.

Data for the pole-placement problem is given in Table 4.1.6.

The parameters of the compensator are:

H -6.258 0.3151 K= [-1.221 1.9591

= -24.226 -2.602J z

(4.1.3)

D -26.92 -31.216] Ky= [-36.437 -30.255]
0 -212909-59.339 j y

and the total closed loop matrix is

-6.258 0.315 -267.925 -31.216 0.000 0.000
-24.226 -2.602 -1212.909 -59.339 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.200 -0.650

A f  0.000 0.000 -0.014 1.000 -0.041 0.000
c 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 -45.000
0.000 0.000 0.000 0.000 0.000 0.000
1.221 -1.959 36.437 30.255 0.000 0.000

0.000 0.000 0.000"
0.000 0.000 0.000
0.000 0.000 0.000
-0.002 2.600 0.000
-0.015 -0.033 0.000 (4.1.4)

1.000 0.000 0.000
-0.130 255.000 0.000
0.000 0.000 1.000
0.000 -50.000 -10.OO
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Table 4.1.6. Data for pole-placement problem
based on ordering %1,k2,x5,%6

r 3.0291
f = [1.000] f2L 1 5fi 1.000] f2f P 21.0551 p [0.o0 00 4.6511

9 [1.6211 92 [1.000]

i The spectrum of A2 is: The spectrum of A =A r is:
2. (-2.000, 0.000) 3. (-1.625, 5.407)

2. (-0.039, 0.000) 2. (-1.625, 5.407)
3. (-0.038, 7.130) 3. (-1.000, 3.500)
4. (-0.038, -7.130) 4. (-1.000, -3.500)

5. ( 1.107, 0.000) 5. (-0.055, 0.000)

"-0.036 0.0031
2.624 -0.279

B = -9.639 1.742|0 0.402 -0.111|
0.585 0.731J

A2 -A + blflgI (TA 2) =

-0.030 -0.035 -0.015 0.108 0.0001
-0.773 2.512 1.008 -10.049 0.0001

-12.316 -4.974 -0.007 94.898 0.000
0.501 -1.629 -0.005 6.516 1.000|

-6.443 20.939 0.064 -133.755 -10.000_

Ar A 3 A 2 + [blb 2 If2A 2) =

-0.038 -0.009 -0.015 0.003 0.0001
-0.360 1.170 1.004 -4.679 0.000
-10.818 -9.841 -0.022 114.363 0.000|

0.276 -0.896 -0.003 3.586 1.000|
-3.009 9.781 0.030 -89.123 -10.000
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Referring to Table 4.1.7 and Figure 4.1.3 it is verified that the compen-

sated system has retained from the optimal state regulator a four

dimensional subspac- spanned by the eigenvectors corresponding to Ai, 2,A59

X 6' Also the compensator is open loop stable.

Recalling that H, D, and K are determined only up to a similarity

transformation under W p, the pair (D,K z) may be balanced by introducing

1z
, W H W , D = W.D K = K W . (4.1.5)z pop po z zp

For example, if Wp =L 12x2 then H and K are unchanged and
p25 o y

[-10.7.17 -124
D -124 = [-30.525 48.975] (4.1.6)

=L -48.516 -2.374] z

For purposes of comparison a design is given based on the ordering

39 4,9,V A 6,A A7,Xi, The pole-placement problem was solved by first

placing a pole arbitrarily at -1.0, and then in the second stage of the

algorithm, placing a complex pair at -1.0+ j3.0. This resulted in a

spectrum for A which met the criteria given before, and again placed a realr

pole near A7' The data for the pole-placement problem are given in Table

4.1.8. The parameters of the resultant compensator are:

H - -30.530 4.925] K = [ -15.881 3.919]
0 L -68.884 8.858 Kz

(4.1.7)

D [ -970.743 224.189] K = [-544.318 76.387].
o -2204.778 582.655 y

Again the matrices D and K may be scaled to give (Wp 1
0 z p 12 I2x.

O r -80.895 18.682] kz = (-190.572 47.0281. (4.1.8)
o L-183.732 48.555 z

Comparing the two compensator designs it is seen that that based on

retention of A 1A 2A5X6 resulted in feedback gains more than an order of

magnitude smaller than those obtained in the design based on retention of
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Table 4.1.7. Spectra of closed loop compensated Saturn V
booster and of open loop compensator

Design based on retention Design based on retention
ofXi Xx256 of X3x4x5x6

1. (-5.106, 4.483) X 1 (-18.750, 0.000)
2. (-5.106, -4.483) X 2 ( -2.908, 0.000)
3. (-1.757, 0.820) X 5 ( -2.305, 7.648) X3
4. (-1.757, -0.820) X6 ( -2.305, -7.648) X4

o(A ) 5. (-1.625, 5.407) ( -1.757, 0.820) X5
6. (-1.625, -5.407) ( -1.757, -0.820) X6
7. (-1.000, 3.500) ( -1.000, 3.000)
8. (-1.000, -3.500) ( -1.000, -3.000)
9. (-0.055, 0.000) ( -0.061, 0.000)

1 (-4.430, 2.070) (-17.808, 0.000)
0 2. (-4.430, -2.070) C -3.863, 0.000)
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Figure 4.1.3. Spectrum of compensated Saturn V booster under retention
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Table 4.1.8. Data for pole-placement problem based on ordering

f, =[ 1.000] 9 = [4.7661 0.000 14.541]
f F .7811 .00 = 10.000 33.041]
2 = [33.041] g2 = [1UJU

The spectrum of A 2is: The spectrum of A 3=A ris.'

1. (-9.739, 0.000) 1. (-18.750, 0.000)
2. (-1.000, 0.000) 2. ( -2.908, 0.000)
3. (-0.305, 3.496) 3. ( -1.000, 3.000)
4. (-0.305, -3.496) 4. ( -1.000, -3.000)

*5. (-0.060, 0.000) 5. ( -0.061, 0.000)

F-0.027 0.0051
1.852 -0.392

B = -4.468 2.197
0 -0.010 -0.100

1.819 0.1811

F-0.062 0.069 -0.015 -0.307 0.0001
A2  1.515 -4.925 0.985 19.701 0.000I 0.271 -0.879 -0.003 3.517 1.000

L 1.346 -4.375 -0.013 -32.499 -10.0001

[-0.083 0.135 -0.015 -0.574 0.0001
A3  2.547 -8.277 0.975 33.107 0.000I-0.413 1.341 0.004 -5.363 1.000

L 6.102 -19.831 -0.061 29.324 -10.000
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A3A4AA6 Recall that in comparing the optimal state feedback regulator
3 4 5 6*

with the minimum energy solution, it was noted that the pair AA 2 was

slightly perturbed from -5+J5 whereas the pair A 3A4 arose from two real

poles near -0.45 forming a complex pair and leaving the real axis. It

may be inferred that this has been reflected in the second design by a

large expenditure of energy to retain the pair AA Apparently the first
3 4*

design is preferable.

It should also be noted that in all of the static and dynamic

designs, including the unstable designs based on a zero order compensator,

there is a real pole near the invariant zero at -0.0462. This is con-

sistent with the fact that under high gain output feedback a number of the

poles of the closed loop system tend to the finite invariant zeros [36].

It is interesting to note that the system appears to have two widely

separated time scales in the sense that the gains of interest are "high

gain" relative to the zero at -0.0462, but not relative to the other two

zeros, which do not have any easily discernable influence on the system.

In summary the second order compensator design obtained for the

ordering A 2A25L 6 compares favorably in dimension with the order of the

reduced order observer (n-r= 5) and with the bound on the dimension

required for arbitrary placement of the spectrum of A (n-r-1+l- 5).r

The compensator is open loop stable, retains a four dimensional invariant

subspace of the optimal state feedback regulator in which there is no cost

degradation, requires modest gains, and achieves a damping ratio of

0.275 (n 74)
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4.2. Fifth Order Example

This is a trivial example illustrating the application of the

design methodology to stabilize systems. Let the system be given by

O 1 10 0 0' 0
-6 -5 0 00 r0 1 '0 0 01

x= 0 010 1 0 +1 0  0 0 i (4.2.1)
0 010 01 0L1 0l o -1

and introduce the permutation of states x = Ti

0 00 0 1 0

T= 1 0 0 0 0 (4.2.2)
[0 0 0 101

to obtain the system -=Ax+Bu, y=Cx where

r-5 0-6 0 01 00 0 0 1i 0[ 0 0 0 0]A- 1 0 0 01 C 0 (4.2.3)0 0 0 0 1 0 0 j

0 0 1 0 -1j 004

In this basis xl,x 3 are the state variables of the uncontrollable subsystem

with eigenvalues at -2,-3, while x2,x4,x5 are the state variables of the

controllable subsystem with eigenvalues at -1,0,0.

The solution of the state feedback regulator problem with R-1 and

Q-dg(l,5,0,2,0) is given in Tables 4.2.1 and 4.2.2. It is noted that the

optimal controllable eigenvectors have the form given in (3.3.16). To

insure the invertibility of Y at most one controllable eigenvector may be

retained in Ar, and the possible choices are (c,2),(iPi),(a2, i).

The spectra of the resulting matrices A1 are given in Table 4.2.2. It is

noted that the controllable subspectrum of A is the same in both the cases

A1 dg(a I%1) and A1 - dg(a2X1 ) as predicted by the form of the block diagonal

entries of A1 in (3.3.18).
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Table 4.2.1. Solution of state feedback regulator for fifth
order example

F0.1146 0.0518 0.0817 0.1826 0.13091
0.0518 8.7407 0.5519 6.6400 2.2361

M4 0.0817 0.5519 1.0782 1.3728 0.8610
C 0.1826 6.6400 1.3728 9.3716 3.9090L0.1309 2.2361 0.8610 3.9090 1.9695J

K= 0.1309 2.2361 0.8610 3.9090 1.96951

-5.0000 0.0000 -6.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000

F= 1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 1.0000

The optimal closed loop eigenvectors are (see Table 4.2.2)

0.93611 0.8057
0.0170 0.0948

v 0.3120 v -0.4028
-0.050 2 0.1896

0.1530 [0.3791

F0.00001 0.0000 0.00001
-0.4332 F0.3711 0.1866

-' 0.0000 v 0.0000 + j 0.0000
VA -0.5547 I 2 3 -0.5031 0.2196

Lo.7104,J1 0.2017 -L-0.6968_,
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Table 4.2.2. Eigenvalues of various matrices of the fifth
order example

Spectrum of A Spectrum of F

1. (-3.000, 0.000) 1. (-3.000, 0.000) :1
2 2. (-2.000, 0.000) 2. (-2.000, 0.000) :22 (-2.00 -100 . 2810, 0.000) c
3. (-1.000, 0.000) 3. (-1.281, 0.000) :X1
4. ( 0.000, 0.000) 4. (-0.844, 1.061) X
5. C 0.000, 0.000) 5. (-0.844, -1.016) 2

9 Spectrum of Ac  Spectrum of Ho

1. (-3.000, 0.000) 1. (-2.485, 2.485)
2. (-2.000, 0.000) 2. (-2.485, -2.485)
3. (-1.500, 1.500)
4. (-1.500, -1.500)
5. (-1.281, 0.000)
6. (-0.844, 1.016)
7. (-0.844, -1.016)

Spectra of possible matrices A,

Eigenvalues retained in Ar Spectrum of A1

1. (-0.702, 0.274)
(aIa2) 2. (-0.702, -0.274)

3. ( 0.404, 0.000)

1. (-2.000, 0.000)
(alX I) 2. ( 0.140, 0.583)

3. ( 0.140, -0.583)

1. (-3.000, 0.000)
(a 2 X) 2. ( 0.140, 0.583)

3. ( 0.140, -0.583)
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Since all three static compensators are unstable, a dynamic com-

pensator is designed. Consistent with the desire to retain as many control-

lable optimal eigenvectors as possible the design is based on the ordering

(ao2X1X2 X3a).(The ordering (a1X1 A2X3a2) would serve equally well.) A

second order compensator will be required since (A2,A3 ) is a complex pair.

The reduced pole-placement problem of (3.3.19) is solved in two

stages. Since the final closed loop spectrum will retain the entire optimal

spectrum of F, the choice of poles to assign is arbitrary and taken to be

-1.5+ jl.5. At the first stage a pole is arbitrarily placed at 0.0 using

Procedure 1, and at the second stage the complex pair is assigned using

Procedure 2. The data for this pole-placement problem are given in Table

4.2.3. In the notation of (3.3.21),(3.3.22) the parameters of the resultant

compensator are:
c [-0.3698 1.25511 _F [-0.2332] c [-1.2791]

oL-8.4828 -4.5997 o 0.0830 o L20.1197

00 000 [-0.5000 I0. 00001N 1- 1.2453 -0.1537 N [-  -0.4 c
-00261 -1.1634 0.2777 2.5000

I K C = [-6.2978 -2.8921]

K - [-0.0835] Kc - (14.9777]. (4.2.4)yy

In the original basis the total closed loop matrix is

-0.3698 1.2551 0 ; -0.2332 -1.2791 0 0
-8.4828 -4.5997 0 0.0830 20.1197 0 0

0 0 0 1 0 0 0
A c 0 0 -6 -5 0 0 0 (4.2.5)
c 0 0 0 0 0 1 0

0 0 0 0 0 0 1
L 6.2978 2.8921 1 0.0835 -14.9777 0 -i

1.



91

Table 4.2.3. Data for pole-placement problem for fifth order example

Data for full problem (see equation (3.3.19)):

"-0.5000 -0.00001 "0.0000 0.00001
N= -0.0846 -1.2805 B - -0.0279 0.4586

0 L0.2777 1.6398J oL-0.4069 -1.0028.

[co3 o000 .,000 0,00001-[ 00 7.39

L 2.6660 -1.6398 -1.0000

32 A34 1

Data for reduced problem:
1.0001 f [18.0003]

f 1.0000-6.1098

1- [-0.8261 92 [1.000]

A 1o336oo00] A .000 oooo 0oooo
A2 -1.3036 -1.0000 3 -.5000 -1.0000

The spectrum of A2 is: The spectrum of A3 is:

1. (0.000, 0.000) 1. (-1.500, 1.500)
2. (0.304, 0.000) 2. (-1.500, -1.500)

iI
I
I'
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This compensator retains all the optimal eigenvalues of the state regulator

and is open loop stable.

4.3. Twelfth Order Nuclear Reactor Model

In this example a single input, three output, twelfth order

model of a nuclear reactor is considered. In a preliminary analysis the

system structure of the model will be discussed and the output feedback

pole-placement problem solved, and then a linear quadratic regulator problem

will be defined on the basis of which both a static and a first order

dynamic compensator design will be given.

The model is taken from [241 and referring to Table 4.3.1 is

given by

( [ 1 I [ ] (4.3.1)
2) [All A2 x B2 Y2 C2 [x2]

The system consists of a seventh order uncontrollable subsystem A1 driving

a fifth order controllable subsystem A22* The eigenvalues of these two

L. systems will be denoted {a i}i1 and {X respectively and are given in

Table 4.3.2 and Figure 4.3.1. The observability structure of the system

may be obtained by inspection of the eigenvectors given in Table 4.3.3:

a) The uncontrollable eigenvalues (ala 6) are also unobservable.

b) The first row of C observes a fifth order uncontrollable subsystem

with eigenvalues (a2 3,a4 5,5a7).

c) The second row of C observes a first order controllable subsystem

with a zero eigenvalue.

L.
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Table 4.3.1. System matrices for the nuclear reactor model

The model is k 1 x + whre
A2 B :2)X0

10 
2 211 (2

--0.4044 0.000 0.000 0.4044 0.000 0.000 0.0001
0.000 -0.4044 0.000 0.000 0.4044 0.000 0.0001; iI0.000 0.000 -0.4044 0.000 0.000 0.4044 0.000

000.01818 0.000 0.0005 -0.5363 0.000 0.00 04450.000 0.01818 0.000 0. 455 -0.5363 0.000 0. 000540.000 0.000 0.0818 0.000 0.4545 -0.5363 0.0001
0.000 0.000 0.000 0.000 0.150 0.000 -0.150

1F0.000 0.000 0.000 0.000 0.000 0.000 0.0001

0.000 07.000 0.000 0.000 05.000 0.000 0.000
0.000 -7.500 0.000 0.000 75.000 0.000 0.000

A2= 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000

[0.000 0.000 0.000 0.000 0.0001
600.000 -74.995 0.033 0.346 0.621r 0.000 2.475 -0.033 0.000 0.000

22 0.000 25.950 0.000 -0.346 0.000

L0.000 46.570 0.000 0.000 -0.621_

2 0j clin [0000001] c2  [ 10000

-I0
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Table 4.3.2. Open and closed loop eigenvalues of the nuclear reactor model

The uncontrollable and controllable eigenvalues of A are the
eigenvalues of All and A22 respectively. The eigenvalues of
the optimal state feedback regulator are those of All and F2 2 .
The eigenvalues of the final compensated system are those of
All together with the controllable eigenvalues of Ac.

Spectrum of A1 1 (ai) Spectrum of A2 2 (X ) Spectrum of F2 2 (Xi)

1. (-0.664, 0.000) 1. (-75.502, 0.000) 1. (-75.197, 0.000)
2. (-0.631, 0.195) 2. ( -0.446, 0.000) 2. (-13.051, 12.119)
3. (-0.631, -0.195) 3. (-0.0476, 0.000) 3. (-13.051, -12.119)
4. (-0.379, 0.034) 4. ( 0.000 , 0.000) 4. ( -0.399, 0.000)
5. (-0.379, -0.034) 5. ( 0.000 , 0.000) 5. (-0.034, 0.000)
6. (-0.277, 0.000)
7. (-0.0112, 0.000)

Controllable eigen- Open loop spectrum
values of Ac of H0

1. (-75.197, 0.000) 1. (-76.132, 0)
2. (-13.051, 12.119)
3. (-13.051,-12.119)
4. ( -7.000, 0.000)
5. ( -0.408, 0.000)
6. ( -0.034, 0.000)
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Figure 4.3.1. Eigenvalues of the nuclear reactor model
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Table 4.3.3. Open loop eigenvectors of the nuclear reactor model

The eigenvectors corresponding to controllable eigenvalues

of A2 2 are (see Table 4.3.2 for the definition of Xi. i):

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

x 0.0000 A 2 0.0000 A 3  0.0000 vA4  0.0000

0.0000 .0000 0.0000 0.0000
-0.8146 0.0027 0.0048 -0.0077

0.0267 -0.0161 -0.8179 -0.5774

0.2813 -0.7003 0.4205 -0.5774
v 0.5066 0.7137J. 0.3927 -0.5773

The eigenvectors corresponding to uncontrollable eigenvalues
of A11 are:

-0.0000 0.0071 0.0020
0.0000 0.0029 -0.0123
-0.8417 -0.0210 -0.0041
0.0000 -0.0049 0.0023
-0.0000 0.0043 0.0082

0.5399 0.0137 -0.0078
vl -0.0000 a2  3  -0.0003 -0.0027

0.0000 0.0000 0.0000

-0.0000 0.0039 0.0007
0.0000 -0.0139 -0.0072

-0.0000 -0.2167 -0.2075
0.0000 0.1087 -0.9470-

0.0550 -0.0453 -0.0000 0.0003
-0.0398 -0.0189 -0.0000 0.0003

-0.0001 0.0272 0.9537 0.0003
0.0072 0.0018 0.0000 0.0003

-0.0009 -0.0045 0.0000 0.0003
-0.0023 0.0017 0.3007 0.0003

a4'va5  0.0001 - 0.0030 a 6 0.0000 a 7 0.0003

0.0000 0.0000 0.0000 0.0000
-0.0003 -0.0017 0.0000 -0.0064
0.0008 0.0122 -0.0000 -0.7223

-0.5548 0.7594 0.0000 -0.4926
-0.0966 -0.3133 _-0.0000 _ -0.4853,
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d) The third row of C observes a tenth order system consisting of two

fifth order controllable and uncontrollable subsystems with eigen-

values (X1 ,x2, 3, X4,X5) and (o2 ,3,a4 ,5,a7 ) respectively.

Since output feedback only affects the eigenvalues of the con-

trollable and observable subsystem, a preliminary analysis of the pole-

placement problem under static output feedback compensation may be carried

out on the controllable and observable triple (A2 2,B2,C2 ) under feedback

u=-(k2 k3 )C2 . (Here K= (kl,k 2 ,k 3 )ER3 Xl.) When the linear quadratic

regulator problem is defined, however, it will not be possible to exploit

the uncontrollability of A to reduce the dimensionality of the system

since uncontrollable eigenvectors are not invariant under feedback, and are

shaped in accordance with the selected cost structure (Q,R). It will then

be advantageous to retain the feedback gain k1 through CI .

The matrices of the subsystem (A2 2,B2,C2) are given by:

0 0 0 0 0 11
Y -(81+82+83) C1 a 2 a 3 0

A2 081 - 0 2= 0 2= 00 0
0 82 0 0]

0 83 0 0 -a3 0

a M 0.033 81 = 2.475 (4.3.2)

C1 = 0.346 82 = 25.95

a3 = 0.621 83 = 46.57

a1"+L2+a3 = 1 y = 600.0

and have the controllability canonic form
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01 0 0 0 0
0 0 1 0 0 a2  a3  a4A 22 0 0 o 1 0 B2 = 0 2 =0 0 0 0 1 0y

0 -a2 -a3 -aI

6 = 4.2543 (4.3.3)

E = 148.066

a4 = 75.995

a3 = 37.2614

a2 = 1.60241

from which the open loop characteristic equation is

PO 5 + a4X4 + a3A3 + a2 X. (4.3.4)

Under output feedback u= -(k2 k3)C2 the closed loop characteristic equation

is

pc() X 15 + (k2+a4 )X4 + (k2a4+yk3+a3)X3 + (k2a3+k3
y+a2)X

2

+ (k2a2+k3 e)X + k3S. (4.3.5)

Before investigating the root locus of this equation it is of

interest to determine if the system has any invariant zeros. Since this

is the controllable and observable subsystem, the invariant zeros may be

determined as the roots of the greatest common divisor of all the minors of

full order of the system matrix

[A -X 
-B1

FA22-1 5, _ 2

L 020 x (4.3.6)
7x6

or equivalently in this case as the intersection of the invariant zeros of

the two square systems [35]

rA - X1 -B 1[A X1-
-22--5 ' £2 (4.3.7)

100 010 0
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The zeros of the first system are the distinct eigenvalues of A
22

1i2 A 3A4 ) and those of t'e second system are the parameters: (a2a3).j
Since these two sets are disjoint it follows that the controllable and

observable subsystem has no invariant zeros.

As the closed loop characteristic equation is a function of the

two parameters k2,k3 a conventional root locus plot may be replaced with

a graph of those values of gain (k2k3) for which the eigenvalues of1;2 3

A22 -B2(k2k3)C2 lie in prescribed regions of the complex plane. This will

be done here for the stability region (the left half plane) and for the

region to the left of the hyperbola o /w2 + a2  having as assymptopes

the constant damping lines a =+w.

As the number of assignable eigenvalues is two, these may

momentarily be denoted -s and -t and the closed loop characteristic equation

written

p (X) - (X+s)(X+t)( 3+h 2 2+h1+ho). (4.3.8)

Equating (4.3.5) and (4.3.8) gives the linear system of equations J]

0 -6 st 0 0- k2  0

-a2 -€ s+t st 0 k 0
2-3-

3 -y 1 s+t st h = 2 (43.9)

-a4 -Y1  0 1 s+t h1  a3-st
-1 01 0 0 1 .h2 1 a4-(s+t)

which has a solution for all values of s,t for which IXI O 0. (Compare

equation (1.35).) The boundary of the region of stabilizing gains may be

found as the parameterized solution (k2,k3) (k2 (s,t),k 3 (s,t)) under the

constraints



100

a) a real pole crosses the imaginary axis: s-0, t> 0

2b) a complex pair crosses the imaginary axis: s+t-0, st-w 2 , W;0.

Similarly the boundary of the region to the left of the hyperbola

a- /w2;;2 (a±= .030, X =-a+j) is the solution under the constraints

a) a real pole crosses the line o =0.03: s=0.03, t>0.03

b) a complex pair crosses the hyperbola: s+t= 2a, st = a2 +w2 , o .03.

A graph of these two regions is shown in Figure 4.3.2, and suggests that

a static design for the output feedback regulator problem may be found

satisfactory. It should be noted that placing the eigenvalues of A to
22

the left of the hyperbola has required the gain k2 to be roughly an order

of magnitude larger than the gain k3. Recalling that the third row of C

observed the entire subsystem A whereas the second row only observed a
22

one dimensional generalized eigenvector of X4 5 =0, this suggests that in

designing a static compensator for the linear quadratic regulator the

observability properties of the system may be reflected in disparate values

for the gains k2 and k3 .

A linear quadratic regulator problem is now defined with

Q 0  R - 1 Q22 ' dg[l', ,l' l', 2Pa3] 
"  (4.3.10)

Q =[0 Q22]

Only the states of the controllable subsystem have been penalized, but

since A12 0 0, the optimal solution shapes the eigenvectors of the uncon-

trollable eigenvalues and it is not possible to exploit the uncontrol-

lability of A 1 to reduce the regulator problem to one for pair (A22,B2).

It is true that there is a two dimensional subsystem with eigen-

values (a1,o 6 ) which could be removed to reduce the dimensionality of the
problem from twelve to ten, but this does not seem worthwhile.
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-40 -20 26 46 k,

- - -2

A Real Pale Crossing the Imaginary Axis
-- A Complex Pair Crossing the Imaginary Axis

A Real Pole Crossing the Hyperbola a-oV--70'T13
-A Complex Pair Crossing the Hyperbola cr:V7w2+(O3)2
a Suboptimal Pair Based on Retention of the Complex

Pair X2,3 of the Optimal Feedback Regulator

Figure 4.3.2. Stability regions for the nuclear reactor model
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This uncontrollability will prove useful however, in analyzing the pole-

placement problem for the triple (A ,B 0A 2).

The solution to the regulator problem is given in Table 4.3.4,

and the resultant optimal eigenvectors are given in Table 4.3.5.

Qualitatively, the optimal solution has moved the double pole at the origin

to the complex pair -13+ j12 while only slightly perturbing the remaining

three real poles, suggesting that an output feedback design should concen-

trate on retaining this complex pair. Examination of the eigenvectors of

F in Table 4.3.5 shows that there are severe restrictions on the permissible

choices of A r . Since Ar must satisfy rank(CVA ) = 3 the choices may includer r r

at most two eigenvalues of F22 and are: (X1a2a3),(Xia4a5),(A2X3a7)

(X4a2a3)'(04a4a5),(Xl X 4 a7)" (Those involving X5 are omitted as the

eigenvector corresponding to X5 is nearly in the null space of C.) Since

it is desired to retain as many optimal eigenvectors as possiblea design

is based on retention of (X2 3a7 ) with the expectation that if a compen-

sator is used, additionally one or more of XV, 4,X5 may be retained.

Based on this choice of A and under the permutation of statesr

0 1 01
T 1 0 0 (4.3.11)

L ~ 0 13.

bringing C to the form [1 0], the resulting matrices AI,N ,B ,'2 are

given in Table 4.3.6. The spectrum of A consists of the uncontrollable
1

eigenvalues (Ol,O2,o3,a4,a5,o6) together with three controllable eigenvalues

located at -6.066, -0.407, -0.034. Thus the system is stable as may have

been anticipated from the preliminary output feedback analysis and the

corresponding gain K- (-4.502,-43.385,6.249) lies within the region of

Figure 4.3.2.
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Table 4.3.4. Optimal state feedback regulator solution

0.0000 0.0002 0 0.0008 0.0009 0 0.0024
0.0002 0.0047 0 0.0034 -0.0348 0 0.0115
0.0000 -0.0000 0 -0.0000 0.0000 0 0.0000
0.0008 0.0034 0 0.0214 0.0281 0 0.0521
0.0009 -0.0348 0 0.0281 0.4209 0 0.0552

M f 0.0000 -0.0000 0 -0.0000 0.0000 0 0.0000
C 0.0024 0.0115 0 0.0521 0.0552 0 0.1580

0.0000 -0.3064 0 0.0568 3.1448 0 0.0001
-0.0000 -0.0069 0 0.0001 0.0690 0 -0.0000
0.0000 -0.0002 0 0.0000 0.0024 0 0.0001

-0.0000 -0.0037 0 0.0001 0.0373 0 -0.0000
-0.0000 -0.0084 0 0.0001 0.0846 0 -0.0001

0.0000 -0.0000 0.0000 -0.0000 -0.0000
-0.3064 -0.0069 -0.0002 -0.0037 -0.0084
0.0000 0.0000 0.0000 0.0000 0.0000
0.0568 0.0001 0.0000 0.0001 0.0001
3.1448 0.0690 0.0024 0.0373 0.0846
0.0000 0.0000 0.0000 0.0000 0.0000
0.0001 -0.0000 0.0001 -0.0000 -0.0001

25.7364 0.5511 0.0191 0.2980 0.6757
0.5511 0.0271 0.0008 0.0126 0.0291
0.0191 0.0008 0.4953 -0.0132 -0.0175
0.2980 0.0126 -0.0132 0.3843 -0.1897
0.6757 0.0291 -0.0175 -0.1897 0.1615

K = [0 -0.3064 0 0.0568 3.1448 0 0.00011

25.7364 0.5511 0.0191 0.2980 0.6757]
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Table 4.3.5. Optimal eigenvectors of state feedback regulator solution

The eigenvectors corresponding to controllable eigenvalues of F22 are:

0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

Vl= 0.0000 v 2,vx3= 0.0000 + j 0.0000 v 4 0.0000 v5= 0.0000
1 0.0000 2 3 0.0000 0.0000 4 0.0000 5 0.0000

0.0004 0.0305 -0.0141 -0.0004 -0.0001
0.8135 0.2477 -0.1862 -0.0019 -0.0002

-0.0268 -0.0429 -0.0045 0.0126 0.9997

-0.2820 -0.4549 -0.0535 0.9202 -0.0186
-0.5080 -0.8246 L -0.1062 -0.3912 L-0.0178

The eigenvectors corresponding to uncontrollable eigenvalues of AI are:

0.0000 -0.2172 0.0707
-0.0000 0.1347 0.3648
0.4817 0.6117 -0.2534

-0.0000 0.0876 -0.1441
0.0000 -0.2509 -0.1394

-0.5399 -0.2205 0.4361
v 0.0000 va ,v o 0.0521 +j 0.0646
1 -0.0000 2 3 0.0330 0.0220

0.0000 0.0000 -0.0000
0.0000 -0.0000 0.0000
0.0000 -0.0000 -0.0000
-0.0000 -0.0001 -0.0001

0.3313" 0.7326 0.0000 0.3678
0.3228 -0.3781 0.0000 0.3791

-0.2965 -0.0812 0.9537 0.3907
-0.0405 0.0731 -0.0000 0.3576
0.0516 0.0035 0.0000 0.3685

-0.0116 -0.0298 0.3007 0.3799

v -0.0327 -0.0071 -0.0000 0.3984
ao4'va 5  -0.0024 - -0.0052 a 6 -0.0000 va7 -0.0413

0.0000 0.0000 -0.0000 0.0000
0.0000 -0.0000 0.0000 0.0000
0.0000 -0.0000 0.0000 0.0000
-0. 0000 0.0000_ 0-.000_J L 0.0000i
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Table 4.3.6. Data for pole-placement problem for the nuclear reactor
model based on retention of A 2,3, a7,1

Fo 000015 ' o 0 IA 0 0 0 0J 0 0

12 - -5 0 75.0 0 0.033-0.346 0.632

0.9232 1 0.0000 0.0000 0.0000"
0.9516 0.0000 0.0000 0.0000
0.9808 0.0000 0.0000 0.0000
0.8976 0.0000 0.0000 0.0000

N f 0.9252 0.0000 0.0000 B = 0.0000
0 0.95361 0.0000 0.0000 0 0.0000

-0.4328 1 -4.1715 0.3397 0.3014
-4.6563 -44.8802 3.6811 3.2578
-8.5479 -82.3894 6.8002_L 6.0054

-0.4044 0.0000 0.0000 0.4044 -0.1385 0.0000
0.0000 -0.4044 0.0000 0.0000 0.2617 0.0000
0.0000 0.0000 -0.4044 0.0000 -0.1471 0.4044
0.0182 -0.0000 0.0000 -0.5363 -0.1346 0.0000

A,= 0.0000 0.0818 0.0000 0.4545 -0.6751 0.0000
0.0000 -0.0000 0.0818 0.0000 0.3115 -0.5363
0.0000 2.5478 0.0000 0.0000 -25.4130 0.0000
0.0000 27.6085 0.0000 0.0000 -275.3962 0.0000
0.0000 51.0014 0.0000 0.0000 -508.7316 0.0000

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

-0.0000 0.0000 0.0000
-0.0442 -0.1175 -0.2110
-0.1215 -1.6197 -2.2860

1-0.2244 -2.3529 -4.8439
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Qualitatively this output feedback solution retains the eigen-

vectors corresponding to the optimal complex pair X2,X3 and places two

eigenvalues (though not their eigenvectors) very near their optimal

locations X 1X 5 . However it has also shifted the fast eigenvalue of the

system from -75.2 to only -6.066. This suggests trying to design a first

order compensator to additionally retain A1 with the expectation that two

eigenvalues may still remain near X4,X5. The data for the pole-placement

problem are given in Table 4.3.6.

Because of the block structure of (A1,B0,A1 2) which clearly

satisfies the requirement that the spectrum of A contain the unretained
r

uncontrollable eigenvalues (oi9a2, 3 ,a4 ,1a5,pa6), and the fact that only the

third row of A12 observes the controllable subsystem of Althe pole-placement

problem may be replaced with the single-input single-output pole-placement

22 2 22
problem for the triple (A1 ,BO,A1 2). This problem may then be solved

analytically by transforming to the controllability canonic form:

02 0 1 [1j [C0 C1C2j
-a0  -a -a

a0 = 0.083374 cO M 0.067455 (4.3.12)

a1 - 2.6912 c M 2.1602

a2 = 6.5080 c2 = 4.8663

The closed loop characteristic equation is

PC(X) - X3 + (a2-c3P3)A2 + (a 1 -c 1 P3)A + (ao-CoP 3 ). (4.3.13)

This gives rise to the root locus

A3 + a 2 X2 + aIX + a0
c2

2 +c+ P3 (4.3.14)
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where the roots of the numerator are the controllable eigenvalues of A, and

the roots of the denominator are -0.0338, -0.4101. This near pole-zero

cancellation confirms the expectation that a first order compensator would

allow retention of X and yet still keep two eigenvalues very near their
1

optimal locations X1 , 5 without requiring large gains. Analysis of the

root locus shows that the system is stable for p3 1.235 , with two poles very

nearly at -0.41, -U.034 for -10<p3 "0 Arbitrarily placing a pole at
P3<

-7.0 gives p3 
-0.192 and the controllable subspectrum for Ar becomes

-7.0, -0.408, -0.034.

The parameters of the compensator are then:

Hc 0 [-76.1321

DC - 11 -9.186) = [-88.540 -1.1031
(4.3.15)

Kc = [ 5.820]

K [ -4.502] Kc = [-43.385 7.216]
y

and in the original basis the final closed loop system is d(v)= Ac ()
where A -

-76.132 0.000 0.000 0.000 0.000 0.000 0.000
0.000 -0.4044 0.000 0.000 0.4044 0.000 0.000
0.000 0.000 -0.4044 0.000 0.000 0.4044 0.000
0.000 0.000 0.000 -0.4044 0.000 0.000 0.4044
0.000 0.01818 0.000 0.000 -0.5363 0.000 0.000
0.000 0.000 0.0818 0.000 0.4545 -0.5363 0.000
0.000 0.000 0.000 0.0818 0.000 0.4545 -0.5363
0.000 0.000 0.000 0.000 0.000 0.150 0.000
-5.820 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 -7.500 0.000 0.000 75.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000

L 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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-9.186 -88.540 -1.103 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000. 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.4545 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 (4.3.16)
-0.150 0.000 0.000 0.000 0.000 0.000
4.502 43.385 -7.216 0.000 0.000 0.000
0.000 600.000 -74.995 0.033 0.346 0.621
0.000 0.000 2.475 -0.033 0.000 0.000
0.000 0.000 25.950 0.000 -0.346 0.000
0.000 0.000 46.570 0.000 0.000 -0.621

Thus by taking into account the eigenvector structure of the

optimal state feedback regulator solution, the methodology for designing

regulators has been applied to a nontrivial system having uncontrollable

and unobservable modes. A first order compensator has been constructed

having the property of retaining from the optimal regulator solution a

four dimensional invariant subspace spanned by eigenvectors corresponding

to three controllable and one uncontrollable optimal eigenvalues, at the

same time placing eigenvalues near all the remaining optimal locations.

4.4. Two Interconnected Power System Model

This example considers a model of a power system consisting of

two interconnected steam generators. The model, derived in [37], is given

by ic-Ax+Bu, y-Cx, A,B,C defined in Table 4.4.1, and represents a

linearization of the system about an operating point, describing the system

behavior under real power and frequency variations. The state vector has

the physical correspondence:

xlX 7 - valve displacements in areas one and two

x2,x 8 - power displacements of high pressure turbines in areas

one and two
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Table 4.4.1. System matrices for the two interconnected power
system model

The system is represented as:

As -a1 0b 01u 00k 0 -a x + 0 u, y 0 1 0x

where:

-.0 0 0 0 -4.
4.75 -5.0 0 0 0

As 0 0.16667 -0.16667 0
0 02.0 -2.0 00.025 0.02333 0.035 -0.1125

a, t 0 0 0 0 0.08333)T

a2 - [ 0 0 0 0 22.21439]

b- [4.0 0 0 0 0]T

c n0 0 0 0 1
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x3,x9 - power displacements of intermediate pressure turbines in

areas one and two

x4,xl0 - power displacements of low pressure turbines in areas

one and two

x5,X 11- frequency deviations in areas one the two

x6 - tie-line power flow deviation from area one into area two

and the controls are the set point adjustments in the two areas. It is

assumed that the tie-line power flow and the two frequency deviations are

available for measurement.

Since the system is open loop stable a preliminary analysis of

the static output feedback pole-placement problem may be replaced by an

investigation of the eigenstructure of both the open and closed loop

systems. A clear understanding of this structure will be essential in

applying the design methodology.

The eigenvalues of the open loop matrix may be classified

according to whether the tie-line power flow variable x6 is zero in the

corresponding eigenspace. The eigenvector equation for the open loop

matrix is:

As 1- aa vv1 
x

a 2 v-a 2w = ax , v,wER R l . (4.4.1)

a +A w Aw w

These equations may be rewritten:

(2a2 adj(XI-A s)a + Xdet(XI-A s)) f 0 (4.4.2a)

(As-XI)v - aa1  (4.4.2b)

(As-AI)w - -aaI. (4.4.2c)



If a- 0 then there are five solutions:

rdi
d5 td5 , -d d d

( i.1 l'  i i=l9 od  vi  . (4.4.3)

ii

If #O 0 then (4.4.2a) is a sixth degree polynomial in A and the solution of

(4.4.2) is
Cvlv i

ii=l' ii=l' = c

L-Vi 1(4.4.4)

The numerical values of AdX A C a are given in Tables 4.4.2, 4.4.3.
i'i i'i'i

Thus,given any initial condition, the transient response of the

system may be represented as the sum of a coupled and a decoupled response

x(t) M X c(t) + Xd(t)

Fv C c vd- Adt
6 i1  it 5 d it

* _v5l d i= .Xd t c i i=1  v i e

il -iLi (4.4.5)

6-c- 5 d

= x(O)= 6 a + E Y 0

The first term x (t) represents a projection of the system response into
C

a subspace in which the tie-line power flow variable is nonzero (ai#0, x6#0)

and in which the response of the second generator is in exact opposition

to that of the first generator. The second term xd(t) represents the pro-

jection of the response into a subspace in which the tie-line power flow

variable is zero (x6=0) and the two generators operate synchronously. For

example, consider the case that an initial displacement from the nominal

operating point occurs symmetrically in the two areas. If xi(0)= x1+6(0),

i-l,...,5, x6(0)=O, then the two coupled steam generators evolve with the
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Table 4.4.2. Open loop and optimal closed loop spectra of
power system model

Optimal
Open loop eigenvalues closed loop eigenvalues

1. (-5.028, 0.000) 1. (-9.171, 0.000)I
2. (-1.982, 0.101) 2. (-4.994, 0.000)

c 3. (-1.982, -0.101) 3. (-1.994, 0.000)
1 4. (-0.166, 0.000) 4. (-0.241, 1.943)

5. (-0.061, 1.938) 5. (-0.241, -1.943)

6. (-0.061, -1..938) 6. (-0.220, 0.000)

1. (-5.032, 0.000) 1. (-9.171, 0.000)

d 2. (-1.970, 0.143) 2. (-4.988, 0.000)
x. 3. (-1.970, -0.143) 3. (-2.001, 0.000)

4._______________ ___0.154,_0.149)_4.___0.171, _0.093)

5 . (-0.154, -0.149) 4. (-0.171, -0.093)
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Table 4.4.3. Open ioop eigenvectors of the two interconnected power
system model

c dSee Table 4.4.2 for the definition of the eigenval. es X.,X .The

eigenvectors have the form Vi= a v1] 7, 0

0.0041 0.2034 0.0463 -0.0027
-0.7062 0.3222 0.0620 -0.0027
0.0242 -0.0292 -0.0073 -0.4507

-0.0160 -0.2381 0.5329 -0.4914
0.0031 0.0003 -0.0054 0.0012

-0.0276 -V -0.0121 ±j 0.1197 c -0.3326
1 -0.0041 23 -0.2034 -0.0463 Irm 0.0027

0.7062 -0.3222 -0.0620 0.0027
-0.0242 0.0292 0.0073 0.4507
0.0160 0.2380 -0.5329 0.4914

L-0.0031i -0.0003. L 0.00541 L-0.0012_

-0.0389 0.0497 -0.0047- 0.0975 0.2414-
-0.0162 0.0541 0.7065 0.1702 0.3703
0.0046 0.0016 -0.0242 -0.0129 -0.0353
0.0032 -0.0015 0.0160 -0.5093 0.0730

-0.029 -0.0052 d -003 d d 0.0079 -0.0053
5'- 6 -0-50 ±j-.74 I.0000 V r 0.0000 ±j 0.000056 0.0389 -0.0497 -07.0047 23 0.0975 0.2414

0.0162 -0.0541 0.7065 0.1702 0.3703
-0.0046 -0.0016 -0.0242 -0.0129 -0.0353
-0.0032 0.0015 0.0160 -0.5092 0.0730
L-0.0429.. L 0.0052-.. -0.0036J 0.0079. L -0. 0053 -

0.2434 -0.2146
0.2319 -0.2175

-0.2193 -0.2775
-0.2603 -0.2796

SA -0.1203 0.0900
Vd rd 0.0000 +j 0(.-0000

4' 5 0.2434 -0.2146
-0.2319 -0.2175
-0.2193 -0.2775
-0.2603 -0.2796

L-0.-1203 L 0.0900.
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dynamics of a single fifth order system. Note that the total system is not

observable from the tie-line power flow variable. If x (0)- -x1+6(0),

i=i,...,5, then the system evolves in a six dimensional invariant subspace,

the two steam generators operating in exact opposition to each other.

d c
Inspection of the numerical values of A A ii n Table 4.4.2 shows

that the eigenvalues of A may also be identified in pairs:

xc - d two real eigenvalues at - -5

dx d
{xcxcI- {X2, A two complex pairs at - -2+ jO.1

d d
{AAX}- {A4,AX} two different dominant complex pairs.

The eigenstructure of the system indicates that rather than representing a

pairing of distinct modes, one from each of the two steam generators, this

symmetry represents the pairing of coupled and decoupled modes. For example,

the frequency pair -0.15 +jO.15 may be associated with decoupled synchronous

mechanical rotation of the two generator shafts, while the pair -0.06+J2.0

may be associated with inversely coupled mechanical rotation of the two

shafts. If the initial frequency deviations in the two areas were equal

then the response would be well damped, while if the initial frequency

deviation in one area were the negative of that in the other area, the

response would be slow and highly oscillatory.

It may be shown that the closed loop system possesses the same

eigenstructure symmetry as the open loop system provided the linear quadratic

regulator problem is defined such that the states of the generators are

weighted equally: Q-dg(Q',q,Q'). The resultant closed loop matrix has the

symmetric form
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FI -f1  F21

F a 0 -a2  (4.4.6)

F2  
fl F2

and the closed loop eigenvectors and eigenvalues are given by:

d 5 d 5 1 jd d d( [O (FI+F 2 )v
di d d

iii=1 i-I.v

(4.4.7)

i=
1 i=1  i '{X!2 av} , (XcI-F +F :f) 0v

-vi. -

Therefore all the remarks made regarding the open loop transient response

apply also to the closed loop response.

A linear quadratic regulator problem may now be defined by

letting Q=dg(5,0,0,0,30,10,5,0,0,0,30), R= I2x 2 ' The solution to the

Riccati equation is given in Table 4.4.4, and the optimal closed loop eigen-

vectors are given in Table 4.4.5. Referring to Figure 4.4.1, the optimal

solution has increased the damping of the two complex pairs associated with

coupled and decoupled mechanical rotation of the generator shafts. The real

eigenvalue associated with the tie-line interaction has increased in magni-

d -0.220. The remaining spectrum consists of three pairs of real
6ude: A6

eigenvalues at -2,-5,-9 corresponding to coupled and uncoupled modes. It is

noted that the closed loop eigenvectors 7 (Table 4.4.5) corresponding2 2

to the real eigenvalues at -5 are nearly equal to the eigenvectors 1cd
1' 1

(Table 4.4.3) corresponding to the two open loop eigenvalues near -5.

Since the optimal control has expanded no energy shaping these two eigen-

vectors it is concluded that these two modes might be neglected in designing

* an output feedback compensator.
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Table 4.4.4. Optimal state feedback regulator solution

With Q=dg(5,0,0,0,30,10,5,0,0,0,30) and R- I 1x 2 the solution of

the Riccati equation and the associated feedback matrix are:

M1 -M, M21[ -0.8761 k2
Mc [m 2 16.9456 -m2  K [k 086

M 2 m, Ml k 2  0.8761 k 1

where:

[ 0.4627 0.0292 0.1811 0.0719 4.38021
0.0292 0.0600 0.3147 0.1426 10.3402

MI = 0.1811 0.3147 6.2726 0.5895 6.1776
0.0719 0.1426 0.5895 0.3795 23.7609|
4.3802 10.3403 6.1773 23.7608 2478.8810J

-0.0112 -0.0222 -0.0439 -0.0626 -4.0168-
-0.0222 -0.0458 -0.0492 -0.1233 -9.2460

M2  -0.0439 -0.0492 -0.9310 -0.2711 11.1443
-0.0626 -0.1233 -0.2711 -0.3484 -21.9648
-. 0170 -9.2462 11.1440 -21.9648 -2367.8620_

m2 = [-0.2190 -0.2945 -3.9340 -1.2252 25.39581

0.21901
0.2945

rn 3.9342
1.2252

--25.3955

k= [ 1.8507 0.1169 0.7244 0.2875 17.5206]

k 2 [-0.0449 -0.0889 -0.1755 -0.2502 -16.0673]

2
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Table 4.4.5. Optimal eigenvectors of state feedback regulator solution

See Table 4.4.2 for the definition of the eigenvalues , The eigen
c- d -

vectors have the form: 'I= ai Vi = 0
-vi c viJ

0.4676" -0.0008" 0.0139" 0.4175- 0.0820"
-0.5326 -0.7063 0.0219 0.3858 -0.0757
0.0099 0.0244 -0.0020 -0.0077 -0.0328

-0.0027 -0.0163 -0.6993 -0.0225 -0.0124
0.0014 0.0031 0.0064 -0.0248 0.0039c c cc?i -0.0067 V2= -0.0279 .^ -0.1429 VI 0.1580 +j 0.5468

-0.4653 0.0008 - 0.0139 -0.4175 -0.0820
0.5300 0.7062 -0.0219 -0.3858 0.0757

-0.0098 -0.0244 0.0020 0.0077 0.0328
0.0027 0.0163 0.6993 0.0225] 0.0124

L-0.0014J -0.0031 L-0.0064_ 0.0248 L-o.0039_1

"-0.1394- --0.4642- -0.0018- -0.0034
-0.1385 0.5285 -0.7066 -0.0053
0.4318 -0.0098 0.0244 0.0005
0.4852 0.0027 -0.0164 -0.7070

-0.0014 0.0014 d 0.0036 0.0132
0.2813 = 0.00 = 0.0000 =0.

6 130.1394 -0.4689 I 0.01
0.1385 0.5340 j-0.7064 -0.0053

-0.4318 -0.0099 0.0244 0.0005
-0.4852 0.0028 -0.0163 -0.7070
0.0014 -0.0015 L 0.0036 0.0132

0.1885 0.1255
0.1877 0.1198
0.1995 -0.3451
0.1985 -0.3874
-0.2225 -0.0358
0.0000 +j 0.0000

4' j 0.1885 0.1255
0.1877 0.1198
0.1995 -0.3451
0.1985 -0.3874

_-0.2225. _-0.0358
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Open loop eigenvalues

5 -4 -3 -1 0

-1

-2

optimal closed loop eigenvalues

-9 -5 -3 -2 -2.

a Coupled Modes
oDecoupled Modes *-

FP-6538

Figure 4.4.1. open and closed loop spectra of the power system model
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To apply the design methodology a permtitation of states xi Tx is

introduced where

"00001000000-
00000100000
00000000001
10000000000
01000000000

T 0 0 1 0 0 0 0 0 0 0 0 (4.4.8)

In this basis the observation matrix has the form (I :0) and the state
3x3

vector is (x5 ,x6 ,xllxlx 2,x3,x4,x7,x8 ,x9,xl0).

At the first stage of the design it is necessary to select three

eigenvectors such that Y-1 exists, where the ith column of Y consists of

the 5th, 6th, and llth entries of the corresponding selected eigenvector.

In view of the above discussion of the closed loop eigenstructure, it

follows that the columns of Y have the form (8,0,$) T if a decoupled eigen-

value is selected, and ($,y,-8)T if a coupled eigenvalue is selected. Thus,

for Y to be invertible, A must contain exactly one decoupled eigenvalue andr

two coupled eigenvalues. In particular, the selection of the three dominant

c c c i o osbe
coupled eigenvalues X4,5,6 is not possible.

Subject to complex pairing there are 21 possible choices for Ar,

c c,)( d d )
of which four give a stable spectrum for A1 : (X,X (Xc'x

c c d c cd(X4,X5 , X P04),( 5,X3). For each of these choices however, the spectrum of

A contains at least one eigenvalue with real part to the right of a u-0.060.

Since the spectrum of the open loop system lies to the lect of the line

a- -0.060, a static output feedback design is not acceptable and a dynamic

compensator will be designed.
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To solve the pole-placement problem of the second stage of the

design, A must be selected and the remaining optimal eigenvalues ordered.r

Because of the nature of the tie-line equation the second row of AI2 is all

zeros and it is necessary to introduce

T " [100 0] TAI 2  [ Cl 0 cl = [0.035 0.02333 0.025 0]. (4.49)
0 0 1 [2 o cli

Then Z- 2 and at the ith stage of the algorithm only i+Z-i i+l eigenvalues

may be assigned to Ai+ I. It is assumed that the dimension of the desired

compensator may not exceed four. At first designs based on stable matrices

A1 are discussed and then, as these will prove unsatisfactory, designs based

on unstable matrices A1 will be investigated.

Consider first the four choices of Ar which give rise to a stable

matrix A, As the optimal control expended little energy shaping the

eigenvectors Vc2, the two choices (A2,A 3,A 2 ),( c will not be pursued

here. The other two choices (A4,X, X d),(X , cAd) retain the dominant

coupled frequency pair and since compensator designs based on the first

choice were unsuccessful, only the latter will be considered here.

Let Ar - dg(A 2 ,A4 , 5 ). Based on a desire to retain the dominant

eigenvalues, the pole-placement problem is solved for the ordering

c c d d
A 6 , 3,4,5. All calculations are performed using Procedure 1, and the

data are given in Table 4.4.6. In the following discussion eigenvalues

without superscripts refer to spectra in Table 4.4.6. At the first stage

of the algorithm a complex pair is placed at -0.1± JO.1 in the expectation

of removing the two small eigenvalues A7, 8. Unfortunately the resultant J
spectrum of A2 still contains a small eigenvalue X8 . -0.060. The compen-

sator based on this solution is (D,K have been scaled) 1
O K . . .
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Table 4.4.6. Data for pole-placement problem based on the ordering:
d c c c c

2 4 '5 x6 3

-2.0000 0.1961 0.1830 0.2746
1 4.7500 -2.3665 2.4576 3.6869

Al 0.0000 0.0833 -0.2445 -0.1168
2- 0.0000 0.0473 2.0441 -1.9338.

A[ A,] 0.0000 -0.1838 -0.1715 -0.25731
A2 / 0.0000 2.2413 2.0916 3.1378|

11 0.0000 -0.0851 -0.0794 -0.1192|
|_ 0.0')00 0.0655 0.0612 0.0918-

-7.8452 0.2596 7.3487- -0.2336 0.1484-
-105.3412 -0.0249 -89.6134 -0.1529 0.1192

3.3363 -0.0595 3.4031 0.4484 -0.0101
-1.8903 -0.0280 -2.6205 0.4941 -0.7080

0 7.3517 -0.2596 -7.8421 o 0.2336 -0.1484
-89.6515 0.0249 -105.3800 0.1540 -0.1192

3.4045 0.0595 3.3377 -0.4484 0.0101
-2.6216 0.0280 -1.8914 -0.4940 0.7080

f [1.0000] f2  0:7070] gl= [3914.940 3918.477]

2 1014.327 1017.9721

The spectrum of A, is: The spectrum of A2 is: The spectrum of A3 is:

1. (-5.174, 0.000) 1. (-5.193, 0.000) 1. (-5.197, 0.000)
2. (-2.101, 0.000) 2. (-2.102, 0.000) 2. (-2.102, 0.000)
3. (-1.922, 0.000) 3. (-1.921, 0.000) 3. (-1.921, 0.000)
4. (-1.799, 0.306) 4. (-1.780, 0.315) 4. (-1.741, 0.297)
5. (-1.799, -0.306) 5. (-1.780, -0.315) 5. (-1.741, -0.297)
6. (-0.230, 0.000) 6. (-0.112, 0.104) 6. (-0.152, 0.153)
7. (-0.039, 0.000) 7. (-0.112, -0.104) 7. (-0.152, -0.153)
8. (-0.024, 0.000) 8. (-0.060, 0.000) 8. (-0.037, 0.000)
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H0 = [-0.1904] Do  [-182.623, 0.00297, 182.634]

F-762.3500 -0.4577 -764.92271 K = 20.04231 (4.4.10)

Ky L760.9804 0.4577 763.5529 Kz L -20.04231

Continuing the solution of the pole-placement problem because of the

large gains in Ky and the small eigenvalue X8, f2 is chosen at the second

stage to render A uncontrollable and a complex pair is placed at 0.134jO.13.
3

The compensator based on this solution is (D0,Kz have been scaled)

Ho 0 -0.2322 0.06321 DF-214 .2 81 0.005176 -214.2981
L-0.0567 -1.9364J L-18.645 0.002220 -18.605J ( )(4.4.11)

[841.990 -0.4577 -844.7776]K z. 20.131 -9.015]

KyL840.5499 0.4577 843.4084 K= 20 .1 3 1  9.015

a(H0) = (-1.934, -0.234).

The degree of stability of Ar has decreased: X8 -0.037, and the gains Ky

have increased.

Attempts at continuing the solution of the pole-placement problem

to increase the degree of stability of the closed loop system and reduce

the feedback gains were unsuccessful. Therefore, a different ordering for

Ar ,A was considered. Since the major objection to the design above is the
'r p4

poor stability margin, and based on the suspicion that the small real pole

in a(Al) is due to the tie-line interaction mode X6 departing from its
c

optimal location, Ar is selected to retain X . The remaining two eigenvalues

are chosen based on the expectation that if the spectrum of A1 contains a

complex pair near + J2 then this will correspond to a departure of the

frequency pair X4,5A from their optimal locations. Based on physical 1
considerations it should then be relatively easy to shape the real part of

this complex pair, though the complex part should be insensitive to feedback.
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From an inspection of the spectra of the 21 possible matrices A1
d c c

(this data is not reported here), the choice Arm dg( 3,3, A6) was made.

d c d dThe ordering for the pole-placement problem is taken to be c, d, 4, X
A1, 1, A4  5 *

The pole-placement problem is solved using Procedure 1 at each stage and

the data are given in Table 4.4.7. In the following discussion eigenvalues

without superscripts refer to spectra in Table 4.4.7. At the first stage a
c cAthesonsagf2s

complex pair is placed at the location of 4' X At the second stage f is

chosen to render i uncontrollable and a complex pair is again placed at

c c
A4X 5. At the third stage f is chosen to render uncontrollable the complex

pair just assigned and then eigenvalues are placed at -2,-5. At the last

stage f4 is chosen to render A4 ,A7, 8 uncontrollable and a complex pair is

placed at -3+J2.

Three compensators are defined by this solution to the pole-

placement problem. Based on the first stage of the solution (Do,kz have

been scaled)

H0 W [-6.9601 Do W (50.941 -0.239 -63.913)

[-608.8379 C.2478 755.8289 1r56.57] 
(4.4.12)

y .-638.6288 -0.2479 791.7451 z L58.911

Based on two stages of the solution (D 0K z have been scaled)

H 0.[-6.960 16.116 D . [50935 -0.239 -63.905] (..3
Ho= 0 -9.171j 0o 0 0 0 (4.4.13)

K -608.7381 0.2478 755.73951 [56.57-273.27]
Bae -638.5250 -0.2479 791.652tJ mz e 5 8 . 9 1  -115.18

Based on the complete solution (D0,Kz have been scaled)

... . . . .. Ill III I II I
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Table 4.4.7. Data for pole-placement problem based on the ordering:
d c c d c d d

1 2 -2.0000 0.1279 0.1194 0.17911
A A A 4.7500 -4.8888 0.1037 0.1556|

2 1] 1 0.0000 -0.3099 -0.6114 -0.6672
.A A1  0.0000 1.6633 3.5522 0.32871

0.0000 -0.1215 -0.1134 -0.1701]
= 0.0000 -0.1010 -0.0943 -0.1415

0.0000 0.4756 0.4439 0.6659
0.0000 -0.3211 -0.2997 -0.4496j

-5.1168 -0.5450 4.8607 0.4571 -0.4775 -0.1525 0.0870-
-4.4470 -0.5345 4.0414 -0.5199 0.5240 -0.1311 0.0583
19.0616 1.7236 -19.0248 0.0104 0.0315 0.2584 0.3075

-66.5339 1.3320 12.8315 0.0728 -0.1166 5.9765 -10.3782
N 4.8610 0.5450 -5.1170 0= 0.4765 0.4759 -0.1525 0.0870

4.0418 0.5345 -4.4473 -0.5412 -0.5222 -0.1311 0.0583
-19.0253 -1.7236 19.0622 0.0091 -0.0315 0.2584 0.3075
12.8455 -1.3308 -66.5481 0.0776 0.1164 5.f765 -10.3783

.4 f rn~w~1F ~1.000=[-0 .9954
f0 0 4.0000] f] - f | 0.0628

2[.oo04 3 Lo.0728-

g [745.263 -925.893] g2  [0.122 -0.109] g3
f [748.068 -929.488]

F 0.2210 [8.9730 0.0000 -11.2749]
-0.1526 41.1179 0.0000 -50.9564

4 0.7809 P 84.3020 0.0000 -105.4287L 0.5640 21.5255 0.0000 -27.2383

g4 [38.169 -48.298]

I
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Table 4.4.7. continued

The spectrum of A1 is: The spectrum of A2 is:

. (-5.1090, 0.000) 2. (-5.079, 0.000)
2. (-5.000, 0.000) 2. (-1.979, 0.000)
3. (-1.999, 0.000) 3. (-1.203, 2.501)
4. (-1.978, 0.000) 4. (-1.203, -2.501)
5. (-0.167, 0.000) 5. (-1.093, 0.196)
6. (-0.112, 0.000) 6. (-1.093, -0.196)
7. ( 0.002, 2.026) 7. (-0.241, 1.943)
8. ( 0.002, -2.026) 8. (-0.241, -1.943)

The spectrum of A3 is: The spectrum of A4 is:

1. (-5.079, 0.000) 1. (-5.000, 0.000)
2. (-1.979, 0.000) 2. (-3.224, 2.336)
3. (-1.203, 2.501) 3. (-3.224, -2.336)
4. (-1.203, -2.501) 4. (-2.001, 0.000)
5. (-1.093, 0.196) 5. (-1.884, 0.000)
6. (-1.093, -0.196) 6. (-0.304, 0.000)
7. (-0.241, 1.943) 7. (-0.241, 1.943)
8. (-0.241, -1.943) 8. (-0.241, -1.943)

The spectrum of A5 is:

1. (-4.999, 0.000)
2. (-3.000, 2.000)
3. (-3.000, -2.000)
4. (-2.001, 0.000)
5. (-1.842, 0.000)
6. (-0.546, 0.000)
7. (-0.214, 1.943)
8. (-0.241, -1.943)
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[-9.1432 0.2209 1.7208 -3.24241 [ 7.3655 0.0949 - .994 1
H 0.1214 -8.1721 7.3545 -13.8580 D = 33.439 0.4032 -40.400

H0 -0.0662 -0.3129 -4.5239 8.2957 0 -7.968 0.8692 11.217J
L-0.0142 -0.0517 -1.0476 1.6279 L-0.837 0.236 1.741J

Ky= -22.6798 0.2478 -28.5104 K = 8.276 -7.668 5.957 -10.206]

-50.4229 -0.2479 61.0083 8.334 6.804 -11.387 22.475

(4.4.14)

The first order compensator gives a nice total closed loop spectrum

but has the same disadvantage encountered before of large feedback gains.

The second order compensator has no apparent advantage over the first beyond

the retention of the optimal pair (Xll). The fourth order compensator

however has nice properties. It requires gains no larger than 60 as compared

to 20 for the full state feedback solution. Furthermore it retains a seven

Ccc d d d d
dimensional optimal invariant subspace corresponding to (X 1, x,6 xd1, x3 5 )

c c c Thspcrmoand the spectrum of Ar c eigenvalues The spectrum of

the resultant closed loop system is given in Table 4.4.8 and Figure 4.4.2.

The compensator is also open loop stable.

In summary if large feedback gains are tolerable then the first

order compensator defined in (4.4.12) is satisfactory, however, if it is

desired to reduce the magnitude of the feedback gains then the dimension of

the compensator must be increased. The fourth order controller defined by

(4.4.14) is one possibility and its degree compares favorably with that of

the Luenberger reduced order observer (n-r- 8). It is noted that there are

many other possibilities for designing satisfactory controllers. The

analysis presented here has only served to illustrate the design methodology.

i
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Table 4.4.8. Spectra of closed loop system under dynamic compensation

For the compensator For the compensator
given in (4.4.12) given in (4.4.14)

The spectrum of A is: The spectrum of A is:
C c

1. (-9.171, 0.000) 1. (-9.171, 0.000)
2. (-5.079, 0.000) 2. (-9.171, 0.000)

3. (-2.001, 0.000) 3. (-4.999, 0.000)
4. (-1.994, 0.000) 4. (-3.000, 2.000)
5. (-1.979, 0.000) 5. (-3.000, -2.000)
6. (-1.203, 2.501) 6. (-2.001, 0.000)
7. (-1.203, -2.501) 7. (-2.001, -0.000)
8. (-1.093, 0.196) 8. (-1.994, 0.000)
9. (-1.093, -0.196) 9. (-1.842, 0.000)

10. (-0.241, 1.943) 10. (-0.546, 0.000)
11. (-0.241, -1.943) 11. (-0.241, 1.943)
12. (-0.220, 0.000) 12. (-0.241, -1.943)

13. (-0.220, 0.000)
14. (-0.171, 0.093)
15. (-0.171, -0.093)

The spectrum of H is: The spectrum of H is:
0 0

1. (-6.960, 0.000) 1. (-9.170, 0.000)
2. (-7.841, 0.000)
3. (-2.644, 0.000)
4. (-0.557, 0.000)
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0 - i C 3-

4'-9 -8 -5 -4 -3 -2 -1 0

& Retained Optimal Coupled Modes
v Retained Optimal Decoupled Modes
o3 Spectrum of A,
o Open Loop Spectrum of H0

Figure 4.4.2. Closed loop spectrum using the compensator given in (4.4.14)
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CONCLUSIONS

A design oriented methodology for the construction of suboptimal

linear quadratic regulators has been presented. A design criterion has

been taken to be the retention of as many optimal eigenvectors as possible

from a reference state feedback regulator. This gives rise to an associated

output feedback pole-placement problem both in designs using static and

dynamic compensation. For the latter case an algorithm has been given which

solves this pole-placement problem, implicitly fixing the parameters of the

controller, and determining its dimension without a priori assumptions. It

has also been shown that the methodology may be extended to the class of

stabilizable systems. Finally the design methodology has been illustrated

with three nontrivial examples.

4
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